
RMI-MMGM 1

Recursive Market Intelligence through Multi-Machine Geometric
Modeling

Madhav Dogra

June 6, 2025

Abstract

Financial market prediction remains a formidable challenge due to its complex, dynamic, and
often non-linear nature, influenced by a myriad of quantitative and qualitative factors. This pa-
per introduces a novel framework, Recursive Market Intelligence through Multi-Machine Geometric
Modeling (RMI-MMGM), designed to address these complexities. RMI-MMGM proposes a recursive,
modular prediction architecture composed of specialized machines that (1) ingest diverse social and
financial inputs, (2) generate dynamic financial surface equations, (3) project future prices with as-
sociated confidence scores, and (4) continuously learn and adapt from feedback across modules. The
core hypothesis posits that market behavior can be modeled as projections on a learned, dynamic,
non-linear surface defined by Time (X), Volatility (M), a real-time Positivity Rating (S), and a
historically-calibrated Black Impact Factor (β). Price (Y) is thus given by Y = F (X,M,S, β)+ε.
This paper details the conceptual architecture of RMI-MMGM, including the design of its core com-
ponents: a Black Machine for extracting both the Positivity Rating and its Impact Factor, a Surface
Machine for geometric financial modeling using Fourier Feature Networks, and a Projection Machine
for predictive reasoning. Furthermore, it outlines the system integration, feedback loops, and self-
learning mechanisms crucial for continuous adaptation and evolution. The proposed framework aims
to enhance predictive accuracy, provide robust confidence estimation, and offer a more interpretable
model of market dynamics.

Keywords: Financial Forecasting, Machine Learning, Geometric Deep Learning, Implicit Neural Rep-
resentations, Recursive Systems, Sentiment Analysis, Multi-Factor Models, Market Microstructure, Ex-
plainable AI.

1 Introduction
The accurate prediction of financial market movements is a central pursuit in quantitative finance, of-
fering significant economic implications. Traditional models, ranging from econometric approaches like
ARIMA and GARCH to early machine learning applications, have often struggled to capture the full
spectrum of market dynamics, particularly the impact of non-quantifiable information and the inher-
ent non-stationarity of financial time series. Recent advancements in machine learning, particularly
deep learning and natural language processing (NLP), have opened new avenues for developing more
sophisticated and adaptive forecasting systems.

Despite these advances, existing models often operate as monolithic entities or lack robust mechanisms
for integrating heterogeneous data sources and adapting to rapidly changing market regimes. There is a
pressing need for architectures that can dynamically learn complex relationships, explicitly model diverse
influencing factors, and provide transparent confidence assessments for their predictions.

This paper introduces Recursive Market Intelligence through Multi-Machine Geometric Modeling
(RMI-MMGM), a novel framework designed to address these challenges. RMI-MMGM is built upon the
Core Hypothesis that market behavior can be effectively modeled as projections on a learned, dynamic,
non-linear surface F (X,M,S, β), where:

• X: Time (e.g., normalized time index t ∈ R) represents the temporal evolution.

• M: Volatility Factor (e.g., VIX, realized volatility σ ∈ R+) captures market uncertainty and risk.

• S: Positivity Rating (a scalar score S ∈ [−1, 1]) which quantifies the net real-time qualitative
sentiment derived from news, social media, and other textual sources.

Madhav Dogra

RMI-MMGM 2

• β: Black Impact Factor (a learned scalar β ∈ R) which measures the historical sensitivity of the
asset’s price to changes in the Positivity Rating, effectively calibrating the power of sentiment for
a specific asset.

• Y: Price (e.g., closing price, adjusted close P ∈ R+) is the target variable.
The relationship is formally expressed as:

Y = F (X,M,S, β) + ε (1)

where ε represents noise or unmodeled factors.
The RMI-MMGM framework is characterized by:
• Modularity: Composed of specialized machines, each handling a distinct aspect of the modeling

process.

• Recursion: Incorporates continuous feedback loops for model refinement and adaptation.

• Geometric Modeling: Leverages techniques like Fourier Feature Networks to learn complex
financial surfaces.

• Confidence Estimation: Explicitly aims to provide confidence scores with its predictions.
This paper details the two primary phases of RMI-MMGM development: Phase 1, focusing on component-
level prototypes (Black Machine, Surface Machine, and Projection Machine), and Phase 2, addressing
system integration and the implementation of self-learning feedback loops. We believe this architecture
offers a significant step towards more robust, adaptive, and interpretable financial market intelligence.

2 Related Work
The RMI-MMGM framework draws inspiration from and builds upon several key research areas:

• Financial Time Series Forecasting: Traditional methods (ARIMA, GARCH) and more re-
cent machine learning models (SVMs, Random Forests, LSTMs, Transformers) have been widely
applied. RMI-MMGM aims to extend these by explicitly incorporating soft factors and dynamic
surface modeling.

• NLP and Sentiment Analysis in Finance: Extracting sentiment and topical information
from news articles, social media, and financial reports (e.g., earnings calls, SEC filings) has shown
promise in predicting market movements. The Black Machine component directly leverages these
techniques.

• Alternative Data in Finance: The use of non-traditional data sources, such as insider trading
reports, short interest, and macro-economic indicators, is increasingly common. RMI-MMGMs
Black Machine is designed to fuse such structured data with unstructured text.

• Implicit Neural Representations (INRs) and Geometric Deep Learning: INRs, often
utilizing sinusoidal activation functions or Fourier features (e.g., SIREN, Fourier Feature Networks),
have demonstrated remarkable efficacy in representing complex signals and surfaces. The Surface
Machine adapts these concepts for financial modeling.

• Modular and Multi-Agent Systems: Breaking down complex problems into smaller, man-
ageable modules that interact and collaborate is a well-established paradigm in AI. RMI-MMGM
adopts this for creating specialized machines.

• Reinforcement Learning (RL) in Finance: RL has been explored for trading strategies and
portfolio optimization. The feedback and adaptation mechanisms in RMI-MMGM could potentially
leverage RL principles for policy optimization.

• Explainable AI (XAI) in Finance: As models become more complex, understanding their
decision-making processes is crucial, especially in high-stakes domains like finance. While not its
primary focus, the modular nature and the explicit modeling of factors in RMI-MMGM can aid
interpretability.

RMI-MMGM differentiates itself by holistically integrating these diverse research threads into a cohesive,
recursive architecture specifically tailored for financial market intelligence, with a unique emphasis on
learning a dynamic geometric surface.

Madhav Dogra

RMI-MMGM 3

3 System Overview
The RMI-MMGM framework aims to build a recursive, modular prediction architecture. Its overarching
goal is to:

• Ingest diverse social/financial inputs.

• Generate dynamic financial surface equations.

• Project and predict future prices with associated confidence.

• Continuously learn and adapt from feedback across modules.

The system operates on the core hypothesis Y = F (X,M,S, β)+ε, where X,M,S, β, and Y are defined as
Time, Volatility Factor, Positivity Rating, Black Impact Factor, and Price, respectively. The architecture
is envisioned as a collaborative system of specialized machines, as illustrated in fig. 1.

Unstructured In-
puts (Tunstructured)

Structured Inputs
(Dstructured)

Black Machine

Positivity
Rating (S)

Impact Factor (β)

Market In-
puts (for M)

Time (X)

Learned Sur-
face (F ′)

Surface Ma-
chine (F)

Projection Machine Prediction (Y ∗)

Feedback
(Error)

Ground
Truth (Ytrue)

S∗

β∗

M∗

X∗

Update θF

Update θS, θβ

RMI-MMGM Framework

Figure 1: Updated RMI-MMGM architecture with corrected Feedback and Ground Truth placement and
arrow updates.

The iterative process involves:

• The Black Machine processing unstructured and structured data to derive the Positivity Rating
(S) and the Black Impact Factor (β).

• The Surface Machine learning the non-linear function F by mapping historical (X,M,S, β)
tuples to corresponding prices (Y), using techniques like Fourier Feature Networks.

• The Projection Machine utilizing the learned surface F and estimated future inputs (X∗,M∗, S∗, β∗)
to predict future prices (Y ∗) and their confidence intervals.

• A Feedback System that uses prediction errors to refine the parameters and logic of both the
Black and Surface Machines, enabling continuous adaptation.

4 Phase 1: Component-Level Prototypes
This phase focuses on the design, implementation, and individual evaluation of the core machines.

4.1 Black Machine (Social/Soft Factor & Impact Extractor)
Objective: Convert real-world unstructured text and structured data into two distinct outputs: a real-
time continuous latent Positivity Rating (S), representing non-quantitative market influences, and a
periodically calibrated Black Impact Factor (β).

Inputs:

• Unstructured Text (Tunstructured): Earnings call transcripts, SEC filings (10-K, 10-Q), news
articles, social media feeds, analyst reports.

Madhav Dogra

RMI-MMGM 4

• Structured Data (Dstructured): Insider trading reports, short interest data, bond yields, macro-
economic indicators (e.g., inflation, unemployment).

• Historical Market Data (Yhist,Mhist): Required for calibrating the Impact Factor.

Outputs:

• Positivity Rating (St ∈ [−1, 1]): A scalar capturing soft influence on the target asset at time
t.

• Black Impact Factor (β ∈ R): A scalar coefficient representing the historical price sensitivity
to the Positivity Rating.

Stage 1: Deriving Positivity Rating (St)

Stage 2: Estimating Black Impact Factor (β)

Unstructured Text
(Tunstructured)

Structured Data
(Dstructured)

LLM Embedding + NLP
(e.g., BERT/GPT for Etext)

Multi-source Fusion
(Early, Late, Attention)

Latent Factor Learning:
Autoencoder, Re-

gression, SSL

Positivity Rating
(St)

Historical Market Data
(Yhist,Mhist)

Baseline Model G
(quant factors only) −

OLS Regression
εG = c + βS + ν

Impact Factor
(β)

Ŷquant

Ytrue

Residuals εG

Shist

Black Machine Architecture

Figure 2: Detailed internal workflow of the Black Machine, showing the two-stage process for generating
the Positivity Rating (St) and the Black Impact Factor (β).

Approach: The process is divided into two stages. Original latent factor learning techniques from
the single-factor model are now re-contextualized as methods for deriving the Positivity Rating.

Stage 1: Deriving the Positivity Rating (S)

• NLP for Text Processing:

– Utilize pre-trained Large Language Models (LLMs, e.g., BERT, GPT variants) to generate
dense embeddings:

Etext = LLM(Tunstructured) (2)

– Employ techniques like sentiment analysis (si), topic modeling (zj), named entity recognition,
and event extraction to derive structured features from text.

• Multi-source Fusion:

– Let Etext be embeddings/features from text and Estruc be embeddings/features from struc-
tured data (after appropriate normalization and encoding).

– Early Fusion: Concatenate raw or processed features before feeding into a learning model:

Efused = Concat(Etext, Estruc) (3)

– Late Fusion: Process text and structured data streams independently and then fuse their
outputs: Otext = Processtext(Etext), Ostruc = Processstruc(Estruc). The final rating S is a
fusion of these outputs.

Madhav Dogra

RMI-MMGM 5

– Attention Mechanisms: If inputs are sequences (e.g., time-series of news articles or reports),
an attention mechanism can compute weights αi to produce a contextually weighted summary.

• Latent Factor Learning for S:

– Autoencoder: Define an encoder gϕ : Xinput → Rd and a decoder hθ : Rd → Xinput. The
latent vector can be used to derive S. The objective is to minimize reconstruction loss:

min
ϕ,θ
∥Input− hθ(gϕ(Input))∥2 (4)

– Supervised Regressor: Train a regressor freg : Xinput → R to map fused inputs to an
empirically derived soft influence metric Sempirical (e.g., based on expert scores or observed
market anomalies). Objective:

min ∥Sempirical − freg(Input)∥2 (5)

– Self-Supervised Learning (SSL): Utilize market reaction (e.g., immediate abnormal re-
turns ARt post-information release) as a weak supervisory signal for St. The loss function
could be:

LSSL = Loss(St,ARt) (6)

aiming to learn an St that correlates with or predicts ARt.

Stage 2: Deriving the Black Impact Factor (β)

This stage uses historical data to quantify the effect of sentiment, separating it from other market drivers.
It is performed periodically (e.g., weekly, monthly).

• Baseline Quantitative Model: Train a baseline forecasting model G that predicts price changes
using only traditional quantitative factors.

• Calculate Model Residuals: Over a historical window, calculate the prediction errors (residuals)
of this baseline model. These residuals, εG,i, represent the portion of price movement not explained
by the quantitative model: εG,i = Yi,true −G(Xi,Mi, . . .).

• Impact Factor Regression: The Black Impact Factor β is determined by regressing the unex-
plained price residuals on the historical sentiment scores (Si) computed in Stage 1.

εG,i = c+ βSi + νi (7)

The coefficient β is estimated via Ordinary Least Squares (OLS) and captures the marginal price
impact of sentiment.

Evaluation:

• Market Movement Consistency: Qualitative and quantitative assessment of whether S aligns
with significant market events or narrative shifts.

• Correlation Analysis: Corr(S,M) to understand interplay with volatility; Corr(S,∆P) where
∆P is price change, to assess direct relevance.

• Predictive Power Improvement: Test if a baseline forecasting model F (X,M) significantly
improves when augmented to F (X,M,S, β).

• Interpretability: Employ methods like LIME or SHAP to understand which input features con-
tribute most to the derived S factor.

Madhav Dogra

RMI-MMGM 6

4.2 Surface Machine (Fourier Feature Network)
Objective: Generate a non-linear function Y = F (X,M,S, β) that accurately models the historical
relationship between the input factors and price.

Architecture:

• Fourier Feature Encoder: For each input variable v (scalar components of X,M,S, β), the
encoding γ(v) transforms it into a higher-dimensional feature vector using sinusoidal functions:

γ(v) = [a1 cos(2πω1v + ϕ1), a1 sin(2πω1v + ϕ1), . . . , ak cos(2πωkv + ϕk), ak sin(2πωkv + ϕk)]
T (8)

where ωi are frequencies and ϕi are phase shifts. Let X ′ = γX(X), M ′ = γM (M), S′ = γS(S),
β′ = γβ(β). The input to the subsequent MLP is Z = Concat(X ′,M ′, S′, β′). This encoding helps
the MLP learn high-frequency variations effectively.

• Multi-Layer Perceptron (MLP) for Regression: A deep neural network FθMLP(Z) with pa-
rameters θMLP takes the Fourier-encoded features Z as input and outputs the predicted price
Ypred = FθMLP(Z). Activation functions like ReLU, SiLU, or sinusoidal activations (for INRs like
SIREN) can be used.

• Implicit Neural Representation (INR) Perspective: The entire network F can be viewed
as an INR, implicitly defining the surface F : (X,M,S, β)→ Y .

Time (X)

Volatility (M)

Positivity (S)

Impact Factor (β)

Fourier Encoder (γX)

Fourier Encoder (γM)

Fourier Encoder (γS)

Fourier Encoder (γβ)

C MLP for Regression Predicted Price
(Ypred)

X′

M′

S′

β′

Z

Surface Machine: Internal Workflow

Figure 3: Detailed internal workflow of the Surface Machine (F), showing how the four input factors are
individually encoded with Fourier features, concatenated, and then processed by an MLP to predict the
price.

Tasks:

• Dataset Creation: Compile a historical dataset D = {(Xi,Mi, Si, βi, Yi)}Ni=1, where Si and βi

are obtained from the Black Machine.

• Training: Optimize the parameters θMLP (and potentially parameters of γ) by minimizing a
suitable loss function (e.g., MSE) on the training dataset.

• Surface Visualization and Evaluation: Where dimensionality permits (e.g., fixing two variables
and plotting Y against two others), visualize the learned surface.

• Comparison with Baselines: Compare against simpler regression models (linear regression,
gradient boosting) and non-Fourier feature MLPs.

As the model learns a 4-dimensional function Y = F (X,M,S, β), direct visualization is impossible.
To inspect the learned relationships, we can create 3D surface plots by fixing two of the four input
variables at their median values and plotting the price Y against the remaining two. This technique
provides interpretable slices of the 4D hyperspace. Figure 4 shows the six possible combinations of
these visualizations, generated from a model trained on historical data for a sample asset. The red dots
represent the actual historical data points, showing how well the learned surface (the smooth manifold)
fits the data distribution.

Madhav Dogra

RMI-MMGM 7

(a) Price vs. (Time, Volatility) (b) Price vs. (Time, Positivity)

(c) Price vs. (Time, Impact) (d) Price vs. (Volatility, Positivity)

(e) Price vs. (Volatility, Impact) (f) Price vs. (Positivity, Impact)

Figure 4: Visualizations of the learned 4D price surface. Each plot shows a 3D slice where two variables
are held constant at their median values, illustrating the complex, non-linear relationships captured by
the Surface Machine. The plots correspond to the model trained on TSLA data.

The true power of the Surface Machine is not just its predictive accuracy, but its ability to construct an
interpretable, multi-dimensional model of market dynamics. As the learned function Y = F (X,M,S, β)
exists in four dimensions, it cannot be visualized directly. However, by creating 3D slicesfixing two
input variables at their median historical values and plotting the Price against the remaining twowe can
gain profound insights into the complex, non-linear interdependencies the model has captured.

Madhav Dogra

RMI-MMGM 8

Figure 4 presents the six primary slices of the learned 4D hyperspace for a sample asset (TSLA). The
smooth, colored manifold represents the model’s predicted price function, while the scattered red dots
represent the ground-truth historical data. The close correspondence between the data cloud and the
learned surface indicates a good fit, but the true value lies in interpreting the geometry of the surfaces
themselves.

4.2.1 Interpreting the Learned Financial Surfaces

An analysis of each slice in Figure 4 reveals that the RMI-MMGM framework has learned relationships
far more sophisticated than simple linear correlations:

(a) Price vs. (Time, Volatility): This plot uncovers a classic, non-linear market behavior. While the
price shows a general upward trend over time (the overall slope of the surface), its relationship with
volatility is far more nuanced. The model has learned a pronounced volatility canyon: prices
are highest at low volatility, drop significantly as volatility increases to moderate levels (reflecting
fear and risk-aversion), and then begin to level off or even rise slightly at extremely high volatility
regimes, which could correspond to speculative frenzies or buy-the-dip capitulation events. A
linear model could only ever learn a flat plane and would be fundamentally incapable of capturing
this critical U-shaped risk response.

(b) Price vs. (Time, Positivity): This surface provides a stunningly clear validation of the Positivity
factor (S). The model has learned a strong, almost linear ramp where price increases unequivocally
with higher positivity ratings, regardless of the point in time. This demonstrates that the Black
Machine is successfully extracting a signal with direct and powerful explanatory relevance to price.
The steepness of this ramp is a visual proxy for the average impact of sentiment, a concept refined
by the β factor.

(c) Price vs. (Time, Impact): This slice reveals a more subtle, second-order effect. The relationship
is not a dramatic ramp, but a gently warped plane. This is financially intuitive: the Impact factor
(β) does not, by itself, drive price. Instead, it acts as a catalyst for the Positivity factor. The
plot shows that periods with a higher Impact factor tend to coincide with higher prices over time,
suggesting the model has learned to associate sentiment-sensitive regimes with specific market
conditions, likely periods of higher growth or narrative-driven trading.

(d) Price vs. (Volatility, Positivity): This is perhaps the most insightful plot, revealing a powerful
interaction effect that is a cornerstone of behavioral finance. The model shows that the impact
of volatility is conditional on sentiment. When Positivity is high (S > 0.5), the surface is high
and relatively flat with respect to volatility; in other words, positive narratives can make
the market indifferent to risk. Conversely, when Positivity is low or negative (S < 0), the
surface becomes highly corrugated and sensitive to volatility; fear and uncertainty amplify
the market’s reaction to risk. This demonstrates the model’s ability to move beyond simple
additive factors and learn the crucial state-dependent nature of market psychology.

(e) Price vs. (Volatility, Impact): This plot further explores the system’s second-order learning.
The wavy surface suggests that the market’s response to volatility is fundamentally different de-
pending on the sentiment regime (captured by the Impact factor β). In high-impact regimes (where
sentiment is a key driver), volatility might be associated with narrative fervor and large price moves.
In low-impact regimes (where fundamentals may dominate), volatility may be treated more tra-
ditionally as pure, undiluted risk. The model has learned to differentiate between these contexts
automatically.

(f) Price vs. (Positivity, Impact): This surface offers direct visual confirmation of the core hypothe-
sis’s term βS. The plot shows a tilted plane where the price rises with Positivity (S), but critically,
the steepness of this rise is amplified by the Impact factor (β). When β is high, the slope of
the surface along the Positivity axis is steeper, meaning each unit of positive sentiment translates
into a larger price increase. This is precisely the dynamic the RMI-MMGM was designed to model,
and its clear emergence from the data serves as a powerful validation of the entire framework.

In summary, these visualizations demonstrate that the Surface Machine is not a black box but a
sophisticated tool for discovery. It builds a holistic and intuitive model of market behavior, capturing

Madhav Dogra

RMI-MMGM 9

the complex interplay, non-linearities, and conditional dependencies between quantitative and quali-
tative factors that govern financial markets. This level of interpretability and insight is a significant
advancement over models that produce only a single point-prediction.

Evaluation:

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Ypred,i)2 (9)

• Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|Yi − Ypred,i| (10)

• R-squared (R2): Coefficient of determination.

• Fidelity to Curve Shape: Qualitative assessment of how well the learned surface captures known
market patterns (e.g., volatility smiles if M represents moneyness and Y implied volatility, though
here Y is price).

• Generalization: Performance on unseen test data.

• Smoothness/Differentiability: Check if ∇F exists and is well-behaved, which is important for
sensitivity analysis and some optimization techniques. Fourier features generally ensure smooth-
ness.

4.3 Projection Machine (Predictive Reasoner)
Objective: Given future (or hypothesized) inputs X∗,M∗, S∗, β∗, project and predict the future price
Y ∗ with an associated confidence measure.

Inputs:

• The learned surface function F from the Surface Machine.

• Scalar or vector inputs: Future time X∗, estimated future volatility M∗, estimated future Positivity
Rating S∗, and the current (or hypothesized) Black Impact Factor β∗.

Tasks:

• Point Prediction: Evaluate the surface at the target inputs: Y ∗
pred = F (X∗,M∗, S∗, β∗).

• Sensitivity Analysis (Optional but Recommended): Test with noisy inputs: M∗
noisy = M∗+

δM , S∗
noisy = S∗ + δS to understand the predictions stability.

• Confidence Score Generation:

– Monte Carlo Dropout: During K inference passes with dropout layers active in F (if used),
obtain a distribution of predictions {Y ∗

pred,k}Kk=1.

– Mean Prediction: Ȳ ∗
pred = 1

K

∑K
k=1 Y

∗
pred,k.

– Variance (Uncertainty):

Var(Y ∗
pred) =

1

K − 1

K∑
k=1

(Y ∗
pred,k − Ȳ ∗

pred)
2 (11)

This variance can be decomposed into aleatoric and epistemic uncertainty if the model is
designed accordingly.

– Ensemble Methods: Train Nens different Surface Machines (e.g., with different initializa-
tions or bootstrapped data). The mean of their predictions serves as Y ∗

pred, and the variance
across predictions serves as an uncertainty measure.

Madhav Dogra

RMI-MMGM 10

– Quantile Regression: Modify the Surface Machines loss function to predict specific quan-
tiles of the conditional distribution of Y . For instance, predict Q0.05(Y

∗|X∗,M∗, S∗, β∗) and
Q0.95(Y

∗|X∗,M∗, S∗, β∗) to form a 90% prediction interval.
– Conformal Prediction: A model-agnostic technique that can provide statistically rigorous

prediction intervals based on calibration on a hold-out set.

Evaluation:

• Accuracy on Future Prices: RMSE, MAE on actual future outcomes Y ∗
true.

• Calibration of Confidence Scores: For a p% confidence interval, assess if the true value Y ∗
true

falls within the interval approximately p% of the time across many predictions. Plot reliability
diagrams.

• Sharpness of Prediction Intervals: Narrower intervals are preferred, given they maintain cali-
bration.

• Sensitivity Analysis: Evaluate ∂Y ∗/∂S∗, ∂Y ∗/∂β∗, ∂Y ∗/∂M∗ to understand the predicted
impact of changes in input factors.

• Timeliness: Speed of prediction generation.

5 Phase 2: System Integration & Feedback Loops
This phase focuses on connecting the individual machines into a cohesive, adaptive system.

5.1 Integrate Three Machines into Loop
Refined Pipeline:

• Current State Monitoring (t): Ingest real-time inputs It (text, structured data, market data
for Mt).

• Black Machine Processing: Generate current Positivity Rating St = BlackMachineStage1(It).
Use most recent β.

• Future State Estimation (t+∆t):

– Estimate future volatility M∗
t+∆t.

– Estimate future Positivity Rating S∗
t+∆t. This is challenging and might involve extrapolating

trends in St, using separate forecasting models for S, or scenario-based analysis.
– Use current Impact Factor β∗

t+∆t = βt.

• Surface Machine Maintenance: The Surface Machine F (X,M,S, β) is continuously maintained
or updated based on new data and feedback.

• Projection Machine Prediction: Predict Y ∗
t+∆t = F (Xt+∆t,M

∗
t+∆t, S

∗
t+∆t, β

∗
t+∆t) along with

confidence.

• Ground Truth Arrival: Observe the actual market price Yt+∆t,true.

• Feedback Computation: Calculate the prediction error E = Yt+∆t,true − Y ∗
t+∆t.

• Feedback Distribution & Updates:

– Black Machine Update: The error E provides a signal for the efficacy of St. If the path is
differentiable, parameters θS for the sentiment model can be updated.

θS ← θS − ηS
∂L(E)

∂St

∂St

∂θS
(12)

This is complex. Alternatively, RL can be used. A simpler heuristic: if E is consistently large,
it might trigger a full recalibration of β.

Madhav Dogra

RMI-MMGM 11

– Surface Machine Update: The parameters θF of the Surface Machine are updated using
the new data point (Xt,Mt, St, βt, Yt,true). Objective: minθF L(Yt,true, FθF (Xt,Mt, St, βt)).
Update rule (e.g., SGD):

θF ← θF − ηF∇θF (Yt,true − FθF (Xt,Mt, St, βt))
2 (13)

Online learning or mini-batch learning can be applied.

• Techniques for Feedback Implementation:

– End-to-End Differentiability: If the entire system from It to Y ∗
t+∆t can be made (ap-

proximately) differentiable with respect to a shared set of parameters Θtotal, then Θtotal ←
Θtotal − η∇ΘtotalLoss(Ytrue, Ypred).

– Reinforcement Learning (RL): Define State st = (Xt,Mt, It, current model parameters),
Action at (e.g., parameters for St estimation), and Reward rt = f(Et).

– Adaptive Learning Rates: Employ techniques like Adam or AdaGrad, or meta-learn learn-
ing rates.

5.2 Self-Learning & Evolution
Objective: Enable continuous improvement, adaptation to market regime changes, and robustness
against concept drift.

Mechanisms:

• Memory Buffer (Experience Replay): Store a large bufferM = {(Ij , Xj ,Mj , Sj , βj , Yj,true, Ej)}.

• Adaptive Retraining Triggers:

– Error-based: Retrain components if cumulative error exceeds a threshold.
– Drift Detection: Monitor the statistical properties of P (Y |X,M,S, β) or the distributions

of the factors themselves.
– Time-based: Periodic retraining (e.g., daily, weekly).

• Adversarial Retraining: To improve robustness, train the system on perturbed inputs. For the
Surface Machine, this involves finding δM, δS, δβ that maximize prediction error:

Ladv = Loss(F (X,M + δM, S + δS, β + δβ), Ytrue) (14)

and then training F to minimize this loss. This can help create smoother, more robust surfaces.

• Online Adaptation / Meta-Learning:

– Online Learning: Update model parameters with each new data point or small batch.
– Meta-Learning (e.g., MAML): Learn model parameters θ that can be rapidly adapted:

θ∗ = θ − α∇θLnew_task(θ) (15)

• Anomaly Detection in Inputs/Outputs: Implement mechanisms to detect anomalies in input
data or in the generated factors St or Y ∗

t+∆t.

• Model Versioning and Selection: Maintain multiple versions of models.

6 Overall System Evaluation Strategy
Evaluating the entire RMI-MMGM framework requires a comprehensive strategy beyond individual
component metrics:

• Backtesting Framework:

– Rigorous out-of-sample backtesting on historical financial data across various assets and mar-
ket conditions.

Madhav Dogra

RMI-MMGM 12

– Walk-forward optimization to simulate realistic model training and deployment.
– Careful consideration of transaction costs, slippage, and data snooping biases.

• Performance Metrics:

– Financial: Alpha, Sharpe Ratio, Sortino Ratio, Maximum Drawdown, Profitability.
– Statistical: Overall RMSE/MAE, calibration of system-level confidence intervals.

• Benchmarking:

– Comparison against established baseline models (e.g., GARCH, LSTMs, simpler factor mod-
els) and potentially commercial solutions.

• Ablation Studies:

– Systematically remove or simplify components (e.g., run without the β-factor by setting it to
1, remove the S-factor, use a linear surface model) to quantify the contribution of each part
of RMI-MMGM.

• Robustness and Stability:

– Stress testing under simulated market shocks or historically volatile periods.
– Analysis of performance consistency over time.

• Computational Cost and Scalability:

– Evaluate the resources required for training and real-time inference.

7 Discussion and Future Work
The RMI-MMGM framework presents a conceptually powerful approach to financial market intelligence.
By explicitly modeling time, volatility, a real-time Positivity Rating, and a data-driven Impact Factor
within a dynamic geometric surface, it has the potential to capture complex market behaviors that
elude simpler models. The modular design facilitates specialized development and upgrades, while the
recursive feedback loops are crucial for adaptation in ever-changing market environments.

Challenges and Limitations:

• Data Requirements: The Black Machine, in particular, requires access to diverse, high-quality,
and timely data streams, as well as extensive historical archives for robust β calibration.

• Factor Estimation: Deriving a meaningful and predictive Impact Factor (β) is a significant
research challenge. The estimation of S∗

t+∆t (future S) is particularly speculative.

• Computational Complexity: Training sophisticated LLMs, Fourier Feature Networks, and man-
aging periodic recalibration of β can be computationally intensive.

• Interpretability: While modularity helps, the internal workings of deep learning components can
still be opaque. Continuous effort in XAI is needed.

• Market Reflexivity: Large-scale deployment of such a model could, in theory, influence the
market it aims to predict.

• Overfitting: The complexity of the model requires careful regularization and validation to prevent
overfitting to historical data.

Future Work:

• Advanced Factor Modeling: Explore dynamic models for β itself, allowing it to vary with
market regimes (e.g., β might be higher in volatile markets). Explore graph neural networks for
relational data in S-factor construction, incorporate more diverse alternative datasets, and develop
more robust methods for S∗

t+∆t forecasting.

Madhav Dogra

RMI-MMGM 13

• Alternative Surface Parametrizations: Investigate other geometric deep learning techniques
beyond Fourier features for the Surface Machine, such as those based on differential geometry or
topology.

• Sophisticated RL for Feedback: Develop more advanced RL agents for managing feedback and
adaptation, possibly using hierarchical RL.

• Causality-Informed Modeling: Incorporate techniques to infer and leverage causal relationships
between factors, rather than relying solely on correlations.

• Hardware Acceleration: Explore specialized hardware (TPUs, GPUs) and distributed comput-
ing frameworks to manage computational demands.

• Integration with Portfolio Optimization: Extend the framework to directly inform portfolio
construction and risk management decisions.

8 Conclusion
The Recursive Market Intelligence through Multi-Machine Geometric Modeling (RMI-MMGM) frame-
work offers a comprehensive and adaptive approach to financial forecasting. By decomposing the problem
into specialized machines for soft factor extraction, dynamic surface modeling, and predictive reasoning,
and by integrating these through recursive feedback loops, RMI-MMGM aims to achieve superior predic-
tive performance and robustness. The explicit modeling of time, volatility, a real-time Positivity Rating,
and a calibrated Black Impact Factor on a learned non-linear surface represents a novel paradigm in
quantitative finance. While significant research and engineering challenges remain, the successful devel-
opment and deployment of such a system could provide a profound leap in our ability to understand and
navigate the complexities of financial markets.

Madhav Dogra

RMI-MMGM 14

A Appendix
This appendix contains the Python code for the core components of the RMI-MMGM framework. The
implementations use standard data science and machine learning libraries such as PyTorch, Transformers,
and Scikit-learn.

A.1 Black Machine Factor Extraction Code
The following script implements the two-stage process for the Black Machine, as described in Section
4.1.

• Stage 1 (Positivity Rating ’S’): The script scrapes recent news headlines for a given ticker from
multiple sources (yfinance and Google News). It then uses a pre-trained financial sentiment model
(FinBERT) to analyze these headlines and compute an aggregate, real-time Positivity Rating (S).

• Stage 2 (Black Impact Factor ’β’): It first trains a baseline quantitative model (XGBoost)
on historical price and volume data to generate price predictions. The errors (residuals) of this
model represent price movements not explained by simple quantitative factors. The script then
fetches and analyzes the sentiment of historical news for the same period. Finally, it performs an
Ordinary Least Squares (OLS) regression of the residuals against the historical sentiment scores.
The coefficient of the sentiment term in this regression is the Black Impact Factor (β), quantifying
the historical price sensitivity to sentiment.

1 import pandas as pd
2 import numpy as np
3 import yfinance as yf
4 import torch
5 import xgboost as xgb
6 import statsmodels .api as sm
7 from transformers import AutoTokenizer , AutoModelForSequenceClassification
8 from sklearn . model_selection import train_test_split
9 import requests

10 from bs4 import BeautifulSoup
11 from datetime import datetime , timedelta
12 import time
13

14 # --- SETUP ---
15 print (" Loading financial sentiment model (FinBERT)...")
16 tokenizer = AutoTokenizer . from_pretrained (" ProsusAI / finbert ")
17 model = AutoModelForSequenceClassification . from_pretrained (" ProsusAI / finbert ")
18 print (" Model loaded .")
19

20

21 # --- PART 1: POSITIVITY RATING (S) ---
22 def analyze_sentiment (text_list : list) -> float :
23 if not text_list : return 0.0
24 inputs = tokenizer (text_list , padding =True , truncation =True , return_tensors =’pt ’,

max_length =512)
25 with torch . no_grad ():
26 outputs = model (** inputs)
27 predictions = torch .nn. functional . softmax (outputs .logits , dim = -1)
28 scores = predictions [:, 0] - predictions [:, 1] # pos - neg
29 return np.mean ([s.item () for s in scores])
30

31

32 def scrape_google_news (query : str , period_days : int = 2) -> list:
33 """ Scrapes Google News for a given query and time period ."""
34 headlines = []
35 end_date = datetime .now ()
36 start_date = end_date - timedelta (days= period_days)
37

38 # Format for Google News URL
39 query = query . replace (" ", "+")
40 url = f" https :// news. google .com/ search ?q={ query }& after ={(start_date). strftime (’%Y -%m

-%d ’)}& before ={(end_date). strftime (’%Y -%m -%d ’)}& hl=en -US&gl=US&ceid=US:en"
41

42 try:
43 headers = {"User - Agent ": " Mozilla /5.0"}

Madhav Dogra

RMI-MMGM 15

44 response = requests .get(url , headers = headers)
45 response . raise_for_status ()
46 soup = BeautifulSoup (response .text , ’html. parser ’)
47

48 # Google News articles are in ’a’ tags with class ’JtKRv ’
49 articles = soup. find_all (’a’, class_ =’JtKRv ’)
50 for article in articles :
51 headlines . append (article .text)
52 except requests . exceptions . RequestException as e:
53 print (f" Error scraping Google News: {e}")
54

55 return list(set(headlines)) # Return unique headlines
56

57

58 def get_positivity_rating (ticker_symbol : str) -> float :
59 """ Calculates the real -time Positivity Rating (S) using multiple data sources ."""
60 print (f"\n--- Calculating Positivity Rating (S) for { ticker_symbol } ---")
61 stock = yf. Ticker (ticker_symbol)
62 company_name = stock .info.get(’longName ’, ticker_symbol)
63

64 # Source 1: yfinance
65 yfinance_headlines = []
66 try:
67 yfinance_headlines = [item.get(’title ’) for item in stock .news if item.get(’

title ’)]
68 except Exception as e:
69 print (f" Could not fetch news from yfinance : {e}")
70

71 # Source 2: Google News Web Scraping
72 google_headlines = scrape_google_news (f"{ company_name } stock ", period_days =3)
73

74 # Combine and deduplicate headlines
75 all_headlines = list(set(yfinance_headlines + google_headlines))
76

77 if not all_headlines :
78 print (f"No recent news found for { ticker_symbol } from any source .")
79 return 0.0
80

81 print (f" Found {len(all_headlines)} unique headlines for ’{ company_name }’.")
82 positivity_score = analyze_sentiment (all_headlines)
83 print (f" Aggregated Positivity Rating (S) for { ticker_symbol }: { positivity_score :.4f}

")
84 return positivity_score
85

86

87 # --- PART 2: BLACK IMPACT FACTOR () ---
88 def train_baseline_model (hist_prices : pd. DataFrame):
89 df = hist_prices .copy ()
90 for i in range (1, 6):
91 df[f’close_lag_ {i}’] = df[’Close ’]. shift (i)
92 df[f’volume_lag_ {i}’] = df[’Volume ’]. shift (i)
93 df = df. dropna ()
94 features = [col for col in df. columns if ’lag ’ in col]
95 X, y = df[features], df[’Close ’]
96 X_train , X_test , y_train , y_test = train_test_split (X, y, test_size =0.2 , shuffle =

False)
97

98 model_xgb = xgb. XGBRegressor (objective =’reg: squarederror ’, n_estimators =100 ,
random_state =42)

99 model_xgb .fit(X_train , y_train)
100 predictions = model_xgb . predict (X_test)
101 residuals = y_test - predictions
102

103 return pd. DataFrame ({
104 ’Actual_Price ’: y_test ,
105 ’Quant_Predicted_Price ’: predictions ,
106 ’Residual_Error ’: residuals
107 }, index = y_test . index)
108

109

110 def get_historical_sentiment (ticker_symbol : str , dates : pd. DatetimeIndex) -> pd. Series :
111 """ Fetches historical news for a list of dates and calculates sentiment ."""
112 print (" Fetching and analyzing historical sentiment . This may take several minutes ...

Madhav Dogra

RMI-MMGM 16

")
113 sentiments = {}
114 stock = yf. Ticker (ticker_symbol)
115 company_name = stock .info.get(’longName ’, ticker_symbol)
116

117 for date in dates :
118 # To scrape for a single day , set the period to one day
119 headlines = scrape_google_news (f’"{ company_name }" ’, period_days =1)
120 sentiments [date] = analyze_sentiment (headlines)
121 time. sleep (0.5) # Be polite to the server
122

123 print (" Historical sentiment analysis complete .")
124 return pd. Series (sentiments)
125

126

127 def calculate_black_impact_factor (ticker_symbol : str) -> float :
128 """ Calculates the Black Impact Factor () using REAL historical data."""
129 print (f"\n--- Calculating Black Impact Factor () for { ticker_symbol } ---")
130

131 print ("1. Training baseline quantitative model ...")
132 stock = yf. Ticker (ticker_symbol)
133 hist_prices = stock . history (period ="2y") # Use a shorter period for faster

historical scraping
134 residuals_df = train_baseline_model (hist_prices)
135 print (f" Baseline model trained . Found {len(residuals_df)} residuals .")
136

137 # 2. Get REAL historical sentiment for the same period
138 print ("2. Calculating REAL historical sentiment for each day ...")
139 # This is the major upgrade - no more simulation
140 historical_sentiments = get_historical_sentiment (ticker_symbol , residuals_df . index)
141 residuals_df [’Positivity_Rating ’] = historical_sentiments . reindex (residuals_df . index

). fillna (0)
142

143 print ("3. Regressing residuals on sentiment to find the Impact Factor () ...")
144 y_reg = residuals_df [’Residual_Error ’]
145 X_reg = sm. add_constant (residuals_df [’Positivity_Rating ’])
146

147 model_ols = sm.OLS(y_reg , X_reg).fit ()
148 black_impact_factor = model_ols . params .get(’Positivity_Rating ’, 0.0)
149 p_value = model_ols . pvalues .get(’Positivity_Rating ’, 1.0)
150

151 print ("\n--- Black Impact Factor Regression Results ---")
152 print (model_ols . summary ())
153

154 print (f"\nThe calculated Black Impact Factor () for { ticker_symbol } is: {
black_impact_factor :.4f}")

155 if p_value < 0.05:
156 print (f"The result is statistically significant (p- value = { p_value :.4f}).")
157 else:
158 print (f"The result is not statistically significant (p- value = { p_value :.4f}).")
159

160 return black_impact_factor
161

162

163 if __name__ == ’__main__ ’:
164 target_ticker = ’TSLA ’
165 current_S = get_positivity_rating (target_ticker)
166 historical_beta = calculate_black_impact_factor (target_ticker)
167

168 print ("\n" + "=" * 50)
169 print (" BLACK MACHINE FINAL OUTPUTS ")
170 print ("=" * 50)
171 print (f"For Ticker : { target_ticker }")
172 print (f" Current Positivity (S): { current_S :.4f}")
173 print (f" Impact Factor (beta): { historical_beta :.4f}")
174 print ("=" * 50)
175

Listing 1: Python code for the Black Machine implementation.

Madhav Dogra

RMI-MMGM 17

A.2 Surface Machine Training and Visualization Code
The following script provides a complete implementation for training the Surface Machine and generating
the 3D surface visualizations shown in Figure 4. It uses PyTorch for the neural network, yfinance for
data retrieval, and Plotly for interactive graphing.

For the purpose of this standalone script, the historical values for the S_positivity and B_impact
factors are simulated using a random walk and an exponentially weighted moving average, respectively.
In the full RMI-MMGM system, these historical data series would be generated by the Black Machine
implementation detailed in Appendix A.1.

1 import pandas as pd
2 import numpy as np
3 import yfinance as yf
4 import torch
5 import torch .nn as nn
6 import torch . optim as optim
7 from torch . utils .data import DataLoader , TensorDataset
8 from sklearn . model_selection import train_test_split
9 from sklearn . preprocessing import MinMaxScaler

10 import plotly . graph_objects as go
11 from itertools import combinations
12 # New import for surface smoothing
13 from scipy . ndimage import gaussian_filter
14

15

16 # --- 1. ARCHITECTURE DEFINITION (Enhanced Regularization) ---
17

18 class FourierFeatureEncoder (nn. Module):
19 def __init__ (self , input_dims : int , embed_dims : int , scale : float = 10.0) :
20 super (). __init__ ()
21 b_matrix = torch . randn (input_dims , embed_dims // 2) * scale
22 self. register_buffer (’b_matrix ’, b_matrix)
23

24 def forward (self , v: torch . Tensor) -> torch . Tensor :
25 if v.dim () == 1:
26 v = v. unsqueeze (-1)
27 proj = 2 * np.pi * v @ self. b_matrix
28 return torch .cat ([torch .sin(proj), torch .cos(proj)], dim = -1)
29

30

31 class SurfaceMachine (nn. Module):
32 """
33 MODIFIED : Increased model capacity and dropout for better generalization .
34 """
35

36 def __init__ (self , fourier_embed_dims : int = 64, mlp_hidden_dims : int = 256 ,
mlp_layers : int = 4,

37 dropout_rate : float = 0.3):
38 super (). __init__ ()
39 self. encoder_x = FourierFeatureEncoder (1, fourier_embed_dims)
40 self. encoder_m = FourierFeatureEncoder (1, fourier_embed_dims)
41 self. encoder_s = FourierFeatureEncoder (1, fourier_embed_dims)
42 self. encoder_b = FourierFeatureEncoder (1, fourier_embed_dims)
43

44 total_input_dims = 4 * fourier_embed_dims
45

46 layers = []
47 in_dims = total_input_dims
48 for _ in range (mlp_layers):
49 layers . append (nn. Linear (in_dims , mlp_hidden_dims))
50 layers . append (nn.SiLU ())
51 layers . append (nn. Dropout (dropout_rate))
52 in_dims = mlp_hidden_dims
53 layers . append (nn. Linear (mlp_hidden_dims , 1))
54

55 self.mlp = nn. Sequential (* layers)
56

57 def forward (self , x, m, s, b):
58 x_encoded = self. encoder_x (x)
59 m_encoded = self. encoder_m (m)
60 s_encoded = self. encoder_s (s)
61 b_encoded = self. encoder_b (b)

Madhav Dogra

RMI-MMGM 18

62 z = torch .cat ([x_encoded , m_encoded , s_encoded , b_encoded], dim = -1)
63 return self.mlp(z)
64

65

66 # --- 2. DATASET CREATION & PREPARATION ---
67

68 def create_surface_dataset (ticker_symbol : str , period : str = "20y"):
69 print (f"\n--- Creating Historical Dataset for { ticker_symbol } over { period } ---")
70 stock = yf. Ticker (ticker_symbol)
71 hist = stock . history (period = period)
72

73 if len(hist) < 60:
74 raise ValueError (f" Historical data for { ticker_symbol } is too short ({ len(hist)}

days).")
75

76 df = pd. DataFrame (index =hist. index)
77 df[’Y_price ’] = hist[’Close ’]
78 df[’X_time ’] = pd. Series (np. linspace (0, 1, len(hist)), index =hist. index)
79 log_returns = np.log(df[’Y_price ’] / df[’Y_price ’]. shift (1))
80 df[’M_volatility ’] = log_returns . rolling (window =30).std () * np.sqrt (252)
81 s_innovations = np. random . randn (len(hist)) * 0.05
82 s_simulated = np. cumsum (s_innovations)
83 df[’S_positivity ’] = pd. Series (np.tanh(s_simulated), index =hist. index)
84 beta_innovations = np. random . randn (len(hist)) * 0.1
85 df[’B_impact ’] = pd. Series (beta_innovations , index =hist. index).ewm(span =200) .mean ()
86

87 df = df. dropna ()
88 if df. empty :
89 raise RuntimeError (" DataFrame is unexpectedly empty after processing .")
90

91 original_df = df.copy ()
92 df = df. astype (np. float32)
93 print (f" Generated dataset with {len(df)} samples .")
94

95 scalers = {}
96 for col in df. columns :
97 scalers [col] = MinMaxScaler ()
98 df[col] = scalers [col]. fit_transform (df [[col]])
99

100 print ("All features and target normalized .")
101 return df , original_df , scalers
102

103

104 # --- 3. TRAINING AND EVALUATION ---
105

106 def train_model (model , train_loader , val_loader , epochs =50 , lr =1e-3, weight_decay =1e -4):
107 """
108 MODIFIED : Increased weight_decay for stronger L2 regularization .
109 """
110 criterion = nn. MSELoss ()
111 optimizer = optim .Adam(model . parameters () , lr=lr , weight_decay = weight_decay)
112

113 print ("\n--- Starting Model Training (with Enhanced Regularization) ---")
114 for epoch in range (epochs):
115 model . train ()
116 train_loss = 0.0
117 for x, m, s, b, y in train_loader :
118 optimizer . zero_grad ()
119 outputs = model (x, m, s, b)
120 loss = criterion (outputs , y)
121 loss. backward ()
122 optimizer .step ()
123 train_loss = np.sqrt(loss.item ()) # RMSE
124

125 model .eval ()
126 val_loss = 0.0
127 with torch . no_grad ():
128 for x, m, s, b, y in val_loader :
129 outputs = model (x, m, s, b)
130 loss = criterion (outputs , y)
131 val_loss = np.sqrt(loss.item ())
132

133 if (epoch + 1) % 10 == 0:

Madhav Dogra

RMI-MMGM 19

134 print (f" Epoch { epoch + 1}/{ epochs } | Train RMSE: { train_loss :.4f} | Val RMSE
: { val_loss :.4f}")

135

136 print (" --- Training Complete ---")
137 return model
138

139

140 # --- 4. VISUALIZATION (Major Enhancements) ---
141

142 def plot_interactive_surface (model , normalized_df , original_df , scalers , x_axis_var ,
y_axis_var):

143 """
144 Generates a detailed , smoothed , and robust interactive 3D surface plot.
145 """
146 model .eval ()
147

148 all_vars = [’X_time ’, ’M_volatility ’, ’S_positivity ’, ’B_impact ’]
149 fixed_vars = [v for v in all_vars if v not in [x_axis_var , y_axis_var]]
150

151 # 1. Higher Resolution Grid
152 grid_size = 50
153 x_range = np. linspace (normalized_df [x_axis_var]. min () , normalized_df [x_axis_var]. max

() , grid_size)
154 y_range = np. linspace (normalized_df [y_axis_var]. min () , normalized_df [y_axis_var]. max

() , grid_size)
155 x_grid , y_grid = np. meshgrid (x_range , y_range)
156

157 input_data = {}
158 input_data [x_axis_var] = torch . from_numpy (x_grid . flatten ()).float ()
159 input_data [y_axis_var] = torch . from_numpy (y_grid . flatten ()).float ()
160

161 for var in fixed_vars :
162 median_val = normalized_df [var]. median ()
163 input_data [var] = torch . full_like (input_data [x_axis_var], median_val)
164

165 with torch . no_grad ():
166 y_pred_normalized = model (
167 input_data [’X_time ’]. unsqueeze (1) ,
168 input_data [’M_volatility ’]. unsqueeze (1) ,
169 input_data [’S_positivity ’]. unsqueeze (1) ,
170 input_data [’B_impact ’]. unsqueeze (1)
171). numpy ()
172

173 y_pred_rescaled = scalers [’Y_price ’]. inverse_transform (y_pred_normalized). reshape (
x_grid . shape)

174

175 # 2. Surface Smoothing using Gaussian Filter
176 # A sigma of 1.0 provides a good amount of smoothing to remove noise .
177 smoothed_y_pred = gaussian_filter (y_pred_rescaled , sigma =1.0)
178

179 # Rescale axes to their original values for plotting
180 x_grid_rescaled = scalers [x_axis_var]. inverse_transform (x_grid)
181 y_grid_rescaled = scalers [y_axis_var]. inverse_transform (y_grid)
182

183 # --- Create the Plot ---
184 # Trace 1: The Smoothed Surface
185 surface_trace = go. Surface (
186 z= smoothed_y_pred , x= x_grid_rescaled , y= y_grid_rescaled ,
187 colorscale =’Viridis ’,
188 opacity =0.8 ,
189 hovertemplate =f’{ x_axis_var . split ("_") [1]. title () }: %{{x:.2f}}
{ y_axis_var .

split ("_") [1]. title () }: %{{y:.2f}}
 Price : %{{z:.2f}}<extra ></extra >’
190)
191

192 # 3. Overlaying Actual Data Points
193 # Take a random sample to avoid cluttering the plot
194 sample_df = original_df . sample (n=min (500 , len(original_df)), random_state =42)
195 scatter_trace = go. Scatter3d (
196 x= sample_df [x_axis_var],
197 y= sample_df [y_axis_var],
198 z= sample_df [’Y_price ’],
199 mode=’markers ’,
200 marker =dict(size =2, color =’red ’, opacity =0.6) ,

Madhav Dogra

RMI-MMGM 20

201 name=’Actual Data Points ’
202)
203

204 fig = go. Figure (data =[surface_trace , scatter_trace])
205

206 # --- Final Touches ---
207 fixed_vals_str = ", ".join(
208 [f"{v. replace (’_’, ’ ’). title ()} fixed at { original_df [v]. median () :.2f}" for v

in fixed_vars])
209 fig. update_layout (
210 title =f" Learned Price Surface : Price vs. ({ x_axis_var . split (’_ ’)[1]. title ()},

{ y_axis_var . split (’_ ’)[1]. title () })
<sup >{ fixed_vals_str }</sup >",
211 scene =dict(
212 xaxis_title = x_axis_var . replace (’_’, ’ ’). title () ,
213 yaxis_title = y_axis_var . replace (’_’, ’ ’). title () ,
214 zaxis_title =’Predicted Price (Y)’,
215 aspectratio =dict(x=1, y=1, z =0.7) # Adjust aspect ratio for better viewing
216),
217 margin =dict(l=65 , r=50 , b=65 , t=90) ,
218 legend =dict(yanchor ="top", y=0.9 , xanchor ="left", x =0.1)
219)
220 fig.show ()
221

222

223 def visualize_all_surfaces (model , normalized_df , original_df , scalers):
224 print ("\n--- Generating 6 Interactive Surface Plots (will open in browser) ---")
225 input_vars = [’X_time ’, ’M_volatility ’, ’S_positivity ’, ’B_impact ’]
226 for var1 , var2 in combinations (input_vars , 2):
227 print (f" Plotting Price vs. ({ var1}, {var2 }) ...")
228 plot_interactive_surface (model , normalized_df , original_df , scalers , var1 , var2)
229

230

231 # --- MAIN EXECUTION BLOCK ---
232 if __name__ == ’__main__ ’:
233 ticker = ’TSLA ’
234 norm_dataset , orig_dataset , scalers = create_surface_dataset (ticker)
235

236 X_data = torch . from_numpy (norm_dataset [[’X_time ’, ’M_volatility ’, ’S_positivity ’, ’
B_impact ’]]. values)

237 y_data = torch . from_numpy (norm_dataset [’Y_price ’]. values). unsqueeze (1)
238

239 (x_train , x_val , y_train , y_val) = train_test_split (X_data , y_data , test_size =0.2 ,
shuffle =False , random_state =42)

240

241 train_dataset = TensorDataset (x_train [:, 0], x_train [:, 1], x_train [:, 2], x_train
[:, 3], y_train)

242 val_dataset = TensorDataset (x_val [:, 0], x_val [:, 1], x_val [:, 2], x_val [:, 3],
y_val)

243

244 train_loader = DataLoader (train_dataset , batch_size =64 , shuffle =True)
245 val_loader = DataLoader (val_dataset , batch_size =64)
246

247 surface_model = SurfaceMachine ()
248 trained_model = train_model (surface_model , train_loader , val_loader)
249

250 visualize_all_surfaces (trained_model , norm_dataset , orig_dataset , scalers)
251

Listing 2: Python code for Surface Machine implementation and visualization.

Madhav Dogra

RMI-MMGM 21

References
[1] Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis:

Forecasting and Control. Wiley.

[2] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, 31(3), 307-327.

[3] Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial
Studies, 33(5), 2223-2273.

[4] Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial
market predictions. European Journal of Operational Research, 270(2), 654-669.

[5] Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictio-
naries, and 10-Ks. The Journal of Finance, 66(1), 35-65.

[6] Kearney, C., & Liu, S. (2014). Textual sentiment in finance: A survey of methods and models.
International Review of Financial Analysis, 33, 171-185.

[7] Corum, K., et al. (2019). Alternative Data in Investment Management. CFA Institute Research
Foundation.

[8] Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit
neural representations with periodic activation functions. Advances in Neural Information Processing
Systems, 33.

[9] Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., ... & Ng,
R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains.
Advances in Neural Information Processing Systems, 33.

[10] Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8(3), 345-383.

[11] Jiang, Z., Xu, D., & Liang, J. (2017). A deep reinforcement learning framework for the financial
portfolio management problem. arXiv preprint arXiv:1706.10059.

[12] Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Her-
rera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion, 58, 82-115.

[13] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

[14] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the
predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[15] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances
in Neural Information Processing Systems, 30.

[16] Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 20.

[17] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.
(2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.

[18] Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. International Conference on Machine Learning.

[19] Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic Learning in a Random World. Springer.

[20] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Madhav Dogra

RMI-MMGM 22

[21] Gama, J., liobait, I., Bifet, A., Peciukait, M., & Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM Computing Surveys (CSUR), 46(4), 1-37.

[22] Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. International Conference on Machine Learning.

Madhav Dogra

	Introduction
	Related Work
	System Overview
	Phase 1: Component-Level Prototypes
	Black Machine (Social/Soft Factor & Impact Extractor)
	Surface Machine (Fourier Feature Network)
	Interpreting the Learned Financial Surfaces

	Projection Machine (Predictive Reasoner)

	Phase 2: System Integration & Feedback Loops
	Integrate Three Machines into Loop
	Self-Learning & Evolution

	Overall System Evaluation Strategy
	Discussion and Future Work
	Conclusion
	Appendix
	Black Machine Factor Extraction Code
	Surface Machine Training and Visualization Code

