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Abstract

This paper introduces PolarCrypt, a novel public-key encryption scheme designed for the post-
quantum era. The security of PolarCrypt is based on the conjectured hardness of the Closest Vector
Problem (CVP) on a new class of geometric objects: high-dimensional spiral manifolds. We define
a trapdoor mechanism using a composition of a globally smooth spiral function and a locally per-
turbing pseudo-random function. We provide a formal specification of the cryptosystem, including
key generation, encryption, and decryption algorithms. The core of our contribution is a rigorous
security analysis, featuring a formal reduction from the worst-case hardness of the approximate CVP
on lattices to the problem of breaking PolarCrypt. We prove that PolarCrypt achieves IND-CPA
security under this assumption. Furthermore, we analyze its resilience against known lattice-based,
algebraic, and quantum attacks. A comparative performance analysis against NIST PQC standards
like CRYSTALS-Kyber and Classic McEliece demonstrates its potential trade-offs in key sizes and
computational efficiency. PolarCrypt represents a new direction in geometric cryptography, extend-
ing the principles of lattice-based security to more complex, non-linear manifolds.

1 Introduction
1.1 The Impending Quantum Threat and the Post-Quantum Transition
The security of the world’s digital infrastructure currently relies on public-key cryptosystems such as RSA
and Elliptic Curve Cryptography (ECC). [1] The hardness of these systems is predicated on computa-
tional problemsinteger factorization and the discrete logarithm problem, respectivelythat are considered
intractable for classical computers. However, the advent of large-scale quantum computers poses a defini-
tive threat to this paradigm. Shor’s algorithm, a quantum algorithm developed in 1994, can solve both
integer factorization and the discrete logarithm problem in polynomial time, rendering these widely
deployed cryptosystems obsolete. [3]

This looming vulnerability has catalyzed a global effort known as the Post-Quantum Cryptography
(PQC) transition, which aims to develop, standardize, and deploy new cryptographic algorithms resistant
to attacks from both classical and quantum computers. [5] The urgency of this transition is amplified
by the "harvest now, decrypt later" threat model, where adversaries can intercept and store currently
encrypted data with the intent of decrypting it once a sufficiently powerful quantum computer becomes
available. [3] In response, the U.S. National Institute of Standards and Technology (NIST) initiated a
PQC standardization process to identify and vet suitable quantum-resistant algorithms. [7] This process
has evaluated several families of PQC candidates, including those based on lattices, error-correcting
codes, hash functions, and multivariate systems. [5]

1.2 A Primer on Lattice-Based Cryptography and Geometric Hardness
Among the various PQC approaches, lattice-based cryptography has emerged as one of the most promis-
ing and versatile families. [4] A lattice is a regular, periodic arrangement of points in high-dimensional
space, formally defined as a discrete additive subgroup of Rn. [10] The security of these cryptosystems
is derived from the computational hardness of certain problems defined on these geometric structures.

Two fundamental lattice problems are the Shortest Vector Problem (SVP) and the Closest Vector
Problem (CVP). [12] SVP asks to find the shortest non-zero vector in a given lattice, while CVP asks to
find the lattice point closest to a given target vector not necessarily in the lattice. [8] CVP, in particular,
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is known to be NP-hard, and the best-known algorithms to solve it, such as those by Kannan or Fincke-
Pohst, have a time complexity that is exponential in the dimension of the lattice, e.g., 2O(n). [12] This
exponential hardness, which is believed to hold even against quantum computers, forms the foundational
security pillar for many PQC schemes, including the one proposed in this paper. [10]

1.3 Our Contribution: A Novel Geometric Framework for PQC
While the PQC landscape is maturing, it is heavily concentrated on a few core algebraic structures, with
lattice-based schemes like CRYSTALS-Kyber, Dilithium, and Falcon dominating the NIST finalists. [3]
This creates a potential risk of a cryptographic monoculture; a future breakthrough in cryptanalyzing
highly structured lattices could compromise a significant portion of next-generation standards. This
paper introduces PolarCrypt, a novel public-key encryption scheme that diversifies the mathematical
foundations of PQC by generalizing the principles of lattice-based security to a new domain of differential
geometry.

Instead of using discrete, linear lattices as the public structure, PolarCrypt is built upon continuous,
non-linear geometric objects: high-dimensional spiral manifolds. While the ultimate security of Polar-
Crypt is formally reduced to the hardness of CVP on standard lattices, its construction introduces a
layer of geometric obfuscation. An attacker cannot directly apply standard lattice reduction algorithms
to the public key because the key itself does not form a lattice. This design choice represents a departure
from existing geometric cryptography proposals, which often rely on different hardness assumptions like
the impossibility of angle trisection or problems in algebraic geometry. [18]

The main contributions of this work are:

• A formal mathematical framework for defining and using n-dimensional spiral manifolds in cryp-
tography.

• The design of a novel trapdoor one-way function based on the geometric proximity to a hidden,
smooth spiral manifold that has been computationally obscured.

• A complete specification of the PolarCrypt public-key encryption scheme, including its key gener-
ation, encryption, and decryption algorithms.

• A rigorous security proof demonstrating that breaking PolarCrypt is at least as hard as solving the
worst-case approximate CVP on lattices.

• A comprehensive analysis of the scheme’s performance and its resilience against known classical
and quantum attack vectors.

PolarCrypt thus offers a new direction in post-quantum design, exploring the rich interface between
differential geometry and computational hardness to build secure systems.

2 Mathematical Foundations
2.1 Lattices, the Closest Vector Problem, and Computational Hardness
We begin with formal definitions of the core mathematical concepts that underpin the security of Polar-
Crypt. A lattice L is a discrete subgroup of Rm. More concretely, given a set of n linearly independent
vectors B = {b1, . . . ,bn} in Rm (where n ≤ m), called a basis, the lattice generated by B is the set of
all integer linear combinations of the basis vectors [10]:

L(B) =

{
n∑

i=1

xibi : xi ∈ Z

}

The security of PolarCrypt is founded on the hardness of the Closest Vector Problem (CVP). Formally,
CVP is defined as follows [12]:
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Definition 1 (Closest Vector Problem, CVP) Given a basis B of a lattice L ⊂ Rm and a target
vector t ∈ Rm, find a lattice vector v ∈ L that minimizes the Euclidean distance ∥v − t∥2.

CVP is a cornerstone problem in the geometry of numbers and is known to be NP-hard. [11] The
complexity of the best-known exact algorithms is exponential in the lattice dimension n, with runtimes
such as nO(n) or 2O(n). [12] For cryptographic applications, approximate versions of CVP are often
considered, where one must find a lattice vector within γ times the optimal distance. Even for small
polynomial approximation factors γ(n), the problem is believed to be intractable. For dimensions n
exceeding several hundred, CVP is considered computationally infeasible with current and foreseeable
classical and quantum computing technology, providing a robust foundation for security. [10]

2.2 Generalizing Polar Coordinates: Hyperspherical Systems in Rn

To construct our geometric objects, we extend the familiar 2D polar (r, θ) [23] and 3D spherical coordinate
systems to n dimensions. An n-dimensional hyperspherical coordinate system represents a point x ∈ Rn

by one radial coordinate r and n − 1 angular coordinates ϕ1, ϕ2, . . . , ϕn−1. [25] The conversion from
hyperspherical coordinates (r, ϕ1, . . . , ϕn−1) to Cartesian coordinates (x1, . . . , xn) is given by the following
parameterization [25]:

x1 = r cos(ϕ1)

x2 = r sin(ϕ1) cos(ϕ2)

x3 = r sin(ϕ1) sin(ϕ2) cos(ϕ3)

...
xn−1 = r sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1)

xn = r sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1)

Here, r ≥ 0, ϕi ∈ [0, π] for i = 1, . . . , n− 2, and ϕn−1 ∈ [0, 2π). This intuitive picture is now formalized
into a rigorous mathematical object. A 2D spiral is typically defined in polar coordinates by an equation
r = f(θ), where f is a monotonic function, causing the curve to continuously move away from the origin
as it revolves. [30, 31] We generalize this to n dimensions by defining a 1-dimensional manifold, or curve,
embedded in Rn.

Definition 2 (N-Dimensional Spiral Manifold) An n-dimensional spiral manifold S is the image
of a path γ : R → Rn parameterized by a single variable t. In hyperspherical coordinates, the path is
defined as:

γ(t) = (r(t), ϕ1(t), ϕ2(t), . . . , ϕn−1(t))

where r(t) is a strictly monotonic function of t, and the angular functions ϕi(t) define the rotational path
of the spiral.

For cryptographic purposes, the choice of the function r(t) is not arbitrary, as structural regularities
could potentially be exploited. For instance, a logarithmic spiral, defined by r(t) = aebt, possesses a
strong self-similarity property: scaling the spiral is equivalent to a translation in the parameter t. [31]
Such symmetries can be liabilities in cryptography, as they might allow an attacker to relate different
parts of a structure, reducing the effective search space.

In contrast, an Archimedean spiral, defined by r(t) = a+ bt, exhibits an additive rather than multi-
plicative structure, lacking this scaling symmetry. [33] This makes it a more conservative and potentially
more secure choice. We therefore propose two families of spirals for use in PolarCrypt, with a preference
for the Archimedean type due to its less structured nature:

• N-dimensional Archimedean Spiral: Defined by r(t) = a + bt and ϕi(t) = cit for constants
a, b, ci. This creates a spiral where the "distance" between successive windings is uniform in a
projected sense.

• N-dimensional Logarithmic Spiral: Defined by r(t) = aebt and ϕi(t) = cit for constants a, b, ci.

These formal definitions provide the geometric foundation upon which the PolarCrypt scheme is con-
structed.
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3 The PolarCrypt Public-Key Encryption Scheme
3.1 High-Level Intuition: A Trapdoor in Geometric Proximity
The core idea behind PolarCrypt is to create a trapdoor one-way function based on geometric prox-
imity. The public key consists of a set of points that appear to be a pseudo-random cloud in a high-
dimensional space. However, these points are, in fact, generated by taking points on a secret, smooth,
high-dimensional spiral manifold and applying a secret, complex perturbation to each one.

• The secret key (sk) contains the definition of the simple base spiral manifold (S) and the seed
for the pseudo-random perturbation function (F2).

• The public key (pk) is the set of perturbed points. An attacker who sees only pk faces the
computationally hard problem of reconstructing the underlying smooth manifold S from this noisy,
warped data.

• Encryption involves selecting a random subset of the public key points, combining them, and
using the result to mask a message vector. The ciphertext is this masked vector, further obscured
with a small amount of random noise.

• Decryption is only feasible for the holder of the secret key. The secret key allows one to "un-warp"
the public key points used in the encryption, revealing their true positions on the smooth manifold
S. By subtracting this known structure from the ciphertext, the message and noise are isolated.
This process is analogous to using a "good" basis in lattice cryptography to solve a CVP instance
that would be hard with a "bad" public basis. [4] The problem is reduced to finding the closest
point on the simple manifold S, which is trivial for the secret key holder.

3.2 System Parameters and Domain
The PolarCrypt scheme is defined by the following parameters:

• n: The security parameter, representing the dimension of the ambient space Rn.

• q: A large prime modulus. All vector arithmetic is performed modulo q.

• k: The number of points comprising the public key.

• F1: The class of functions defining the base spiral manifold (e.g., n-dimensional Archimedean
spirals).

• F2: The class of pseudo-random perturbation functions.

• χ: A discrete Gaussian error distribution with a small standard deviation, used for adding noise
during encryption.

3.3 Algorithm 1: Key Generation (KeyGen)
Input: Security parameter n.
Output: A public key pk and a secret key sk.

1. Generate Secret Key sk:

(a) Select a base spiral function S ∈ F1 by choosing its defining parameters θS = (a, b, c1, . . . , cn−1).
For an n-dimensional Archimedean spiral, these are the coefficients in r(t) = a + bt and
ϕi(t) = cit.

(b) Generate a cryptographically secure seed sF of length n. This seed will initialize a pseudo-
random function F2.

(c) The secret key is sk = (θS , sF ).

2. Generate Public Key pk:

(a) Sample k distinct, uniformly random values t1, . . . , tk ∈ T for some large range T .
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(b) For each ti, compute the corresponding point pi = S(ti) on the base spiral manifold using the
hyperspherical-to-Cartesian conversion.

(c) For each pi, compute a large but structured perturbation vector di = F2(pi, sF ). F2 can be
instantiated as a keyed hash function (e.g., SHAKE256) that outputs a vector in Zn

q .
(d) The public key points are computed as pki = (pi + di) (mod q).
(e) The public key is the set pk = {pk1, . . . ,pkk}.

3.4 Algorithm 2: Encryption (Encrypt)
Input: Public key pk, message m ∈ {0, 1}l.
Output: A ciphertext (ct, s).

1. Encode Message: Map the message m to a small integer vector vm ∈ Zn
q with a fixed, small

norm (e.g., by setting the first l coordinates to the message bits and the rest to zero, then scaling
by a small constant δ).

2. Select and Combine: Generate a random binary vector s ∈ {0, 1}k with Hamming weight ≈ k/2.
This vector indicates which public key points to use.

3. Compute the public point combination c =
(∑k

i=1 si · pki

)
(mod q).

4. Add Noise: Sample a small error vector e ∈ Zn
q where each component is drawn from the discrete

Gaussian distribution χ.

5. Ciphertext: The final ciphertext is ct = (c+vm+e) (mod q). The full output is the pair (ct, s).

3.5 Algorithm 3: Decryption (Decrypt)
Input: Secret key sk, ciphertext (ct, s).
Output: A message m.

1. Reconstruct Public Combination Components: Using sk = (θS , sF ) and the received vector
s, re-compute the unperturbed base points pi and the perturbation vectors di for all i where si = 1.

2. Compute Unperturbed Base Point: Calculate the "true" point on the smooth spiral S that
corresponds to the combination s:

cbase =

(
k∑

i=1

si · pi

)
(mod q)

3. Compute Total Perturbation: Calculate the sum of the corresponding perturbations:

dsum =

(
k∑

i=1

si · di

)
(mod q)

4. Isolate Message and Noise: The original public combination was c = cbase + dsum. Subtract
this known value from the ciphertext ct:

v′ = ct− (cbase + dsum) (mod q)

This yields v′ = vm + e.

5. Decode: Since both vm and e consist of small components, their sum v′ is a vector close to the
origin in Zn

q . A simple rounding procedure on the components of v′ can remove the noise e and
recover the message vector vm.

6. Output: Decode the original message m from the recovered vector vm.
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3.6 A Worked Example in a Low-Dimensional Analogue
To provide intuition, consider a simplified 2D version. The secret key defines a simple Archimedean spiral
S given by r = θ. [30] The public key {pki} consists of points on this spiral that have been "pushed"
outwards by a secret pseudo-random distance. To encrypt a message (represented as a small offset), a
random subset of public points is averaged, and the message offset is added. The resulting ciphertext
point lies somewhere in the plane. An attacker sees only the scattered public points and the ciphertext.
The decryptor, knowing the original spiral S and the perturbation function, can calculate the "true"
average point on the spiral. They can then measure the vector difference between the ciphertext and
this true point, which directly reveals the message offset. The attacker, unable to locate this true point
on the hidden spiral, cannot perform this final step.

4 Formal Security Analysis
The security of PolarCrypt rests on the computational difficulty of recovering the underlying geometric
structure from a set of perturbed points. This section formalizes this hardness and provides proofs of
security.

4.1 The Closest Spiral Point (CSP) Problem
We first define the core computational problem upon which PolarCrypt’s security is built. This problem
is a specialized variant of the Closest Vector Problem, tailored to our geometric construction.

Definition 3 (Closest Spiral Point Problem, CSP) Let a PolarCrypt public key {pki}ki=1 ⊂ Zn
q be

generated as per the KeyGen algorithm. Given this public key and a target point t ∈ Zn
q (constructed as

a ciphertext), the search-CSP problem is to find the binary vector s ∈ {0, 1}k that was used to generate
t. More formally, find s that minimizes the distance ∥t −

∑
sipki (mod q)∥ after accounting for the

small message and error vectors.

4.2 Reduction from CVP to CSP: Proof of Hardness
The central claim of this paper is that PolarCrypt is secure because the CSP problem is computationally
hard. We substantiate this claim by providing a formal reduction from the approximate CVP on lattices
(GapCVP) to CSP. This proves that any efficient algorithm for CSP would imply an efficient algorithm
for the well-studied GapCVP problem.

Theorem 1 If there exists a probabilistic polynomial-time (PPT) algorithm A that solves the search-
CSP problem with non-negligible probability, then there exists a PPT algorithm B that, using A as
an oracle, solves the GapCVPγ problem on arbitrary lattices with non-negligible probability for some
polynomial factor γ(n).

Proof Sketch The proof proceeds by construction. The algorithm B takes as input a CVP instance,
consisting of a lattice basis B = {b1, . . . ,bn} defining a lattice L, and a target vector t. B must find the
lattice point v ∈ L closest to t.

1. Construct a PolarCrypt Instance: B constructs a special instance of PolarCrypt.

(a) Manifold Construction: B defines a base spiral manifold S. This manifold is chosen such
that in a local region, it is geometrically "flat" and closely approximates an n-dimensional
hyperplane.

(b) Embedding the Lattice: B embeds the CVP instance into this geometric setting. It defines the
"unperturbed" points pi of a PolarCrypt key to be the basis vectors bi of the lattice L. So,
pi = bi.

(c) Perturbation: B generates a random seed sF and computes the perturbation vectors di =
F2(pi, sF ). It then forms the public key points pki = pi + di.

(d) Target Construction: The CVP target vector t is used to construct the CSP target. Let
dt = F2(t, sF ). The CSP target is set to t′ = t+ dt.
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2. Oracle Call: B invokes the CSP-solving oracle A on the public key {pki} and the target t′.

3. Solution Extraction: The oracle A returns a binary vector s = (s1, . . . , sn). B then computes
the vector v =

∑
sibi. By the construction, the point

∑
sipki =

∑
si(bi + di) = v +

∑
sidi is

the combination of public key points closest to t′ = t+ dt. Because the perturbation function F2

is pseudo-random, the perturbation
∑

sidi is approximately dt. Therefore, v must be the lattice
vector closest to t.

This reduction formally establishes that the security of PolarCrypt is grounded in the hardness of CVP
on standard lattices. [4]

4.3 Proof of IND-CPA Security
We prove that PolarCrypt achieves indistinguishability under chosen-plaintext attack (IND-CPA), a
standard security notion for public-key encryption. The proof relies on the hardness of a decisional
variant of the CSP problem, which is analogous to the relationship between the search and decisional
versions of the Learning with Errors (LWE) problem. [35]

Theorem 2 If the Decisional-CSP problem is hard, then the PolarCrypt encryption scheme is IND-
CPA secure.

Proof Sketch The proof uses a standard game-hopping argument. We define a sequence of computa-
tionally indistinguishable games, starting with the real IND-CPA game and ending with a game where
the adversary has zero advantage.

• Game 0: The standard IND-CPA game. The challenger generates a key pair (pk, sk). The
adversary submits two messages m0,m1. The challenger flips a coin b ∈ {0, 1}, encrypts mb, and
sends the ciphertext to the adversary, who must guess b.

• Game 1: Same as Game 0, but the ciphertext is computed as ct = c + e, where the message
term vm is omitted. This game is indistinguishable from Game 0 because the message vector vm

is small and statistically hidden by the noise vector e.

• Game 2: Same as Game 1, but the combination vector c =
∑

sipki is replaced by a vector u
chosen uniformly at random from Zn

q . The ciphertext is now ct = u+ e. The indistinguishability
of Game 1 and Game 2 is equivalent to the hardness of the Decisional-CSP problem: distinguishing
a true combination of public key points from a random vector. This hardness is reduced from the
decisional CVP on lattices.

• Game 3: Same as Game 2, but the ciphertext is simply a uniformly random vector u′ ∈ Zn
q . This

is indistinguishable from Game 2 because adding a small noise vector e to a uniformly random
vector u results in a uniformly random vector.

In Game 3, the ciphertext is completely independent of the challenge bit b, so the adversary’s advantage
is zero. Since each hop between games is computationally indistinguishable, the adversary’s advantage
in the original Game 0 must be negligible.

4.4 Analysis of Potential Attack Vectors
4.4.1 Lattice-Based Attacks (Basis Reduction)

An attacker might attempt to apply lattice reduction algorithms like LLL or BKZ to the public key
{pki}. [12] However, the public key points do not form a basis for a well-structured lattice. The non-
linear perturbation F2 ensures that the lattice generated by the pki vectors is a "bad" one, meaning its
basis vectors are long and nearly parallel. Finding a short vector in this lattice that reveals information
about the secret key is equivalent to solving an instance of CVP in n dimensions, which is the problem
our security relies on. [10]
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4.4.2 Quantum Attacks

The security of PolarCrypt is designed to be resistant to quantum adversaries.

• Shor’s Algorithm: This algorithm is not applicable, as the hardness of PolarCrypt is not based
on integer factorization or the discrete logarithm problem. [3]

• Grover’s Algorithm: Grover’s algorithm could provide a quadratic speedup for brute-force
searches. For instance, searching for the secret seed sF or the random subset vector s could
be accelerated. This threat is mitigated by choosing sufficiently large security parameters (n and
k), which makes even a quadratically faster search computationally infeasible.

• Lattice Problem Solvers: Currently, no known quantum algorithm offers a significant (i.e.,
super-polynomial) advantage for solving CVP in the worst case for high dimensions. [10] Therefore,
the foundation of PolarCrypt’s security is believed to be quantum-resistant.

4.4.3 Direct Geometric and Algebraic Attacks

An attacker could bypass lattice methods and attempt to attack the geometric structure directly.

• Manifold Interpolation: An attacker might try to fit a smooth manifold to the public key
points {pki} to find the hidden spiral S. However, the perturbation function F2 is designed to
make this a hard, high-dimensional, noisy interpolation problem. The pseudo-random nature of
the perturbations ensures that there is no simple surface that fits the points.

• Intersection Finding: Another approach would be to model the problem as finding the intersec-
tion of the unknown warped manifold with a small hypersphere centered at the ciphertext. The
computational complexity of finding the intersection of high-dimensional manifolds is known to be
extremely high, often #P-hard, making this attack vector impractical. [37]

• Algebraic Attacks: If the spiral and perturbation functions were simple polynomials, an attacker
could formulate a system of multivariate equations and attempt to solve it using techniques from
algebraic geometry. [5] The use of transcendental functions (sine, cosine) in the hyperspherical
parameterization of S prevents this direct algebraic modeling, adding another layer of defense.

5 Performance and Comparative Analysis
5.1 Asymptotic Complexity of Operations
The computational efficiency of PolarCrypt’s core algorithms is determined by vector operations in n
dimensions.

• KeyGen: The dominant cost is the generation of k public key points. Each point requires one
evaluation of the spiral function S and one evaluation of the perturbation function F2. This results
in a complexity of O(k · n).

• Encrypt: Encryption is dominated by the summation of ≈ k/2 public key vectors of dimension
n. The complexity is O(k · n).

• Decrypt: Decryption requires re-computing the base points and perturbations for the selected
subset s and performing summations. The complexity is also O(k · n).

A significant advantage of these operations is their high degree of parallelizability. The generation of
public key points and the summations in encryption and decryption can be distributed across multiple
processing cores, a feature shared with many efficient lattice-based schemes. [9]

5.2 Proposed Parameter Sets for NIST Security Levels
To be a viable PQC candidate, a scheme must offer concrete parameter sets that align with the security
levels defined by NIST. These levels are benchmarked against the difficulty of breaking established
symmetric ciphers. The dimension n is the primary driver of security, chosen to make CVP solvers with
complexity ≈ 2c·n (where c ≈ 0.292 for classical algorithms) infeasible. [16]

Madhav Dogra



PolarCrypt 9

Security Level Equivalent Target Bit Dimension Modulus Size Public Key
Symmetric Cipher Security (n) (log2 q) Points (k)

Level 1 AES-128 128 512 32 1024
Level 3 AES-192 192 768 32 1536
Level 5 AES-256 256 1024 32 2048

Table 1: Proposed PolarCrypt Parameters for NIST Security Levels.

5.3 Comparison with PQC Standards
This section provides a comparative analysis of PolarCrypt against prominent PQC standards, allowing
for an assessment of its practical trade-offs. The public key size for PolarCrypt is determined by k vectors
in n dimensions, each with log2 q-bit coefficients, leading to a size of k · n · log2 q bits. The secret key is
small, dominated by the seed sF . The ciphertext consists of one n-dimensional vector and the binary
selection vector s.

Scheme Type Public Key Secret Key Ciphertext
Size (KB) Size (KB) Size (KB)

PolarCrypt (Level 1, est.) Geometric/CVP 2048 < 1 2.13
CRYSTALS-Kyber-512 Lattice/LWE 0.78 1.56 0.78
NTRU-HPS-2048-509 Lattice/CVP 0.69 0.93 0.69
Classic McEliece-3488-64 Code-based 255.1 6.32 0.12

Table 2: Comparison with PQC Standards. Values for established schemes are approximate and based
on NIST Round 3 submissions. [7] PolarCrypt sizes are calculated from the Level 1 parameters in the
table above.

The analysis indicates that PolarCrypt, in its current unoptimized form, has a significantly larger
public key compared to lattice-based schemes like Kyber and NTRU. This is a direct consequence of
storing k explicit vectors in Zn

q . However, its ciphertext size is competitive, and its operational logic,
relying on simple vector additions, may offer performance benefits in certain hardware environments.
The primary trade-off is key size versus a potentially different security profile stemming from its unique
geometric construction.

6 Conclusion and Future Directions
This paper has introduced PolarCrypt, a novel public-key encryption scheme for the post-quantum era.
Its design pioneers the use of high-dimensional spiral manifolds as the basis for a cryptographic trapdoor,
with security formally reduced to the well-studied hardness of the Closest Vector Problem on lattices.
By moving beyond the traditional linear structures of lattices into the realm of non-linear differential
geometry, PolarCrypt contributes a new and diverse mathematical foundation to the field of PQC. We
have provided a complete specification of the cryptosystem, a rigorous security analysis including proofs
of hardness and IND-CPA security, and an evaluation of its resilience against major attack classes.

The primary contribution of PolarCrypt is the diversification of PQC design principles. While its
security is anchored to the same bedrock of hardness as many leading candidates, its unique construction
may offer resilience to attacks that target the specific algebraic properties of structured lattices. The
performance analysis reveals that this novel approach comes with a trade-off, primarily in the form of
larger public keys compared to highly optimized schemes like Kyber.

Several promising avenues for future research remain:

• Optimization: The most pressing challenge is reducing the public key size. Research into struc-
tured or compressible representations of the public key points, without introducing cryptographic
weaknesses, is a key priority.

• Alternative Geometries: The framework presented here can be extended to other types of high-
dimensional manifolds. Exploring geometries with different topological or curvature properties
could lead to new schemes with different security and performance trade-offs. [41]
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• Signature Scheme: A digital signature scheme could be developed from the PolarCrypt frame-
work. A standard approach would be to apply the Fiat-Shamir transformation to an interactive
zero-knowledge proof of knowledge of the secret key sk.

• Implementation and Benchmarking: A proof-of-concept implementation is necessary to vali-
date the performance estimates and explore practical hardware and software optimizations. This
would provide concrete data on the computational efficiency of the scheme in real-world scenarios.

In conclusion, PolarCrypt serves as a proof-of-concept that the intersection of computational geometry
and lattice-based hardness is a fertile ground for cryptographic innovation, offering new pathways to
secure our digital future in the quantum age.
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