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Abstract

Infinitely differentiable (C∞) curves are crucial in computer graphics, physical simulations, and geo-
metric design. While traditional methods like splines and Bézier curves are effective, they face challenges
regarding true infinite differentiability and flexible control. This paper proposes a novel physics-inspired
framework for generating C∞ smooth curves by continuously deforming a base curve (initially a straight
line segment) under the influence of dynamically modulated gravitational fields. The deformation is
driven by multiple gravitational control points, each defined by an adjustable magnitude and location.
We explore four types of gravitational kernels governing the influence: Inverse-Power Law, Gaussian, Log-
arithmic Potential, and Hybrid combinations (Gaussian+Inverse-Power, Logarithmic+Gaussian). Regu-
larization techniques are presented for kernels with singularities (Inverse-Power, Logarithmic) to ensure
smooth behavior. The resulting curve is defined by the superposition of forces from all control points.
A proof is provided demonstrating that the smoothness of the base curve and the (regularized) kernels
guarantees C∞ continuity of the final curve. This approach offers intuitive control over curve shape via
control point parameters and kernel selection, with potential applications in graphics, simulation, and
design requiring high degrees of smoothness and complex deformations.

1 Introduction

Infinitely differentiable, or C∞, curves are of paramount importance in a diverse range of practical fields,
each leveraging their inherent smoothness and continuity for critical applications. In computer graphics,
these curves are essential for creating visually appealing and mathematically well-behaved shapes. Their
smooth transitions and continuous changes in direction are fundamental for tasks such as motion planning
and trajectory optimization in animation and virtual environments. For instance, Bézier curves, widely
employed in computer graphics, serve as a cornerstone for designing smooth object outlines, creating intricate
font designs, and defining animation paths [42]. The ability of these curves to represent complex shapes with
a realistic appearance, surpassing the limitations of simple line segments, underscores their significance in the
field. Furthermore, vector graphics systems utilize splines to represent curves that maintain their smoothness
regardless of the viewing scale, highlighting the practical necessity of infinitely differentiable curves in digital
visual media.

The realm of physical simulations also heavily relies on the properties of smooth curves. Differentiable
simulators, increasingly utilized in computational physics, robotics, and machine learning, benefit signifi-
cantly from smooth mathematical representations. These representations facilitate the efficient computation
of gradients of physical processes, which is crucial for optimization and control tasks [1]. The use of Bézier
curves to simulate natural movements, such as the subtle and continuous motion of a mouse cursor, exem-
plifies the application of smooth curves in creating realistic and physically plausible simulations [5].

In geometric design, the mathematical study of smooth shapes and spaces, known as differential geometry,
highlights the fundamental role of smooth curves [7]. Applications range from the design of roads, where
spline curves ensure gradual and safe transitions in curvature, to the aesthetic considerations in architectural
and automotive design, where high levels of geometric continuity, closely related to infinite differentiability,
are essential for visual appeal and functional performance.

Despite the effectiveness of traditional methods for smooth curve generation, such as splines and Bézier
curves, they encounter certain challenges, particularly concerning the attainment of true infinite differen-
tiability and the flexibility required for complex deformations. While splines offer versatility through their
piecewise polynomial nature, achieving C∞ continuity at the knot points, where polynomial segments meet,

1



is not a standard feature and often requires specialized constructions. Standard polynomial splines typically
provide Ck continuity, where k is related to the degree of the polynomials used. Increasing the degree to
achieve higher-order continuity can introduce undesirable oscillations, such as Runge’s phenomenon, and may
not guarantee infinite differentiability. Moreover, imposing specific derivative conditions at the knots can
sometimes compromise the overall smoothness of the curve. Although specialized types like CINAPACT-
splines can achieve C∞ smoothness, they are specific constructions rather than a general property of all
spline types.

Bézier curves, while inherently smooth (C∞) within their parametric domain, exhibit global control,
meaning that modifying any single control point affects the entire curve shape [42]. This global influence can
be a limitation when localized shape adjustments are desired. While increasing the number of control points
can enable the creation of more complex shapes, it also increases computational costs and can potentially
lead to numerical instability. Ensuring smooth connections between multiple Bézier curve segments requires
careful and often non-intuitive placement of control points to achieve the desired levels of geometric and
parametric continuity.

Inspired by the principles of physics, this paper proposes a novel approach to generating infinitely differ-
entiable smooth curves through the concept of dynamically modulated gravitational fields. This framework
draws upon the analogy of attractive forces, similar to gravity, to continuously deform a base curve. By in-
troducing multiple gravitational control points, each characterized by an adjustable magnitude and location,
the method aims to provide intuitive and flexible control over the curve’s shape, enabling both localized and
global deformations. The magnitude of a control point would correspond to the ”strength” of its gravitational
influence, while its location would determine the spatial extent of its effect.

2 Problem Formulation

The foundation of our framework begins with a simple geometric entity: a straight line segment defined by
two fixed endpoints in a 2D plane. Let these endpoints be denoted as P0 = (x0, y0) and P1 = (x1, y1).
This choice of a straight line as the base curve simplifies the initial mathematical formulation; however, it is
important to note that the principles of this framework could be extended to other base parametric curves
as well. The straight line segment can be represented parametrically by the equation:

C⃗(t) = (1− t)P0 + tP1, for t ∈ [0, 1] (1)

Expanding this equation into its component forms gives:

x(t) = (1− t)x0 + tx1 (2)

y(t) = (1− t)y0 + ty1 (3)

where t is a parameter that varies continuously from 0 to 1. Each value of t within this interval corresponds
to a unique point along the straight line segment connecting P0 and P1. The core idea of our approach is
to continuously deform this base curve under the influence of N gravitational control points. Each control
point, denoted by Gi for i = 1, 2, . . . , N , is defined by its magnitude Mi and its location Li = (xi, yi) in
the 2D plane. The magnitude Mi quantifies the strength of the gravitational influence exerted by the i-th
control point, while its location Li specifies where this influence is centered.

The deformation of the base curve is achieved through the cumulative effect of the gravitational fields
generated by these control points. A control point with a larger magnitude will exert a stronger ”gravitational
pull,” resulting in a greater displacement of the curve in its vicinity. Conversely, a control point with a smaller
magnitude will have a weaker influence. The distance between a control point Gi located at Li and a point
C⃗(t) on the curve is a critical factor in determining the strength and nature of the deformation. Control
points positioned close to the curve will exert a more localized influence, potentially causing sharper bends
or more pronounced deviations in that specific region. Control points situated farther away will contribute to
broader, smoother deformations of the overall curve shape. The precise manner in which this gravitational
influence decays with distance is governed by the mathematical formulation of the chosen gravitational
kernel.

The process of deforming the curve can be envisioned as a continuous displacement of each point C⃗(t) on

the initial straight line segment. This displacement, denoted by ∆C⃗(t), is the result of the net gravitational
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force acting on that point due to all N control points. For each control point Gi, the force exerted on C⃗(t)

will depend on its magnitude Mi, its location Li, the distance rit =
∥∥∥Li − C⃗(t)

∥∥∥, and the specific form of

the gravitational kernel being employed. The total displacement ∆C⃗(t) at a point C⃗(t) is then calculated as
the vector sum of the individual forces (or influences) from all N control points. The final, deformed curve

C⃗ ′(t) is obtained by adding this displacement vector to the original position vector of the point on the base
curve:

C⃗ ′(t) = C⃗(t) + ∆C⃗(t) (4)

This formulation embodies the principle of superposition, where the total effect at any point on the curve
is the sum of the individual contributions from each control point. The magnitude and location of these
control points serve as intuitive parameters for manipulating the curve’s shape, while the selection of the
gravitational kernel dictates the spatial characteristics of their influence.

3 Gravitational Field Models

The heart of our curve generation framework lies in the mathematical models used to represent the grav-
itational influence of each control point. These models, known as gravitational kernels, define how the
”gravitational pull” of a control point varies with distance and thus determines the shape of the result-
ing deformation. We propose the use of four distinct types of kernels: the Inverse-Power Law Kernel, the
Gaussian Kernel, the Logarithmic Potential Kernel, and Hybrid Kernels that combine the features of these
fundamental kernels.

3.1 Inverse-Power Law Kernel

The Inverse-Power Law Kernel models a force field where the strength of the influence decays with the
distance r from the source as an inverse power of that distance [12]. The gravitational potential Φ(r)
generated by a control point of magnitude M at a distance r is mathematically described as:

Φ(r) = −M

rα
(5)

where α > 0 is the exponent that governs the rate of decay of the potential with distance. A larger value of
α indicates a more rapid decay. The gravitational force F⃗ (r), which is responsible for deforming the curve,
is the negative gradient of the potential:

F⃗ (r) = −∇Φ(r) = −dΦ

dr
r̂ = − αM

rα+1
r̂ (6)

Here, r̂ is the unit vector pointing from the point on the curve towards the control point. A significant
challenge associated with the Inverse-Power Law kernel is the singularity that occurs at r = 0, where both
the potential and the force tend to infinity. This singularity can lead to undesirable non-smooth deformations
if not handled appropriately. To address this, a common regularization technique involves modifying the
kernel at small distances by introducing a small positive constant ϵ2 > 0 [15]. A typical regularization
replaces r2 with r2 + ϵ2 in the denominator (or equivalent for rα). Applying this to the potential (using
(r2 + ϵ2)α/2 as the denominator base) gives the regularized form:

Regularized Potential: Φϵ(r) = − M

(r2 + ϵ2)α/2
(7)

The corresponding regularized force is then:

Regularized Force: F⃗ϵ(r) = −∇Φϵ(r) = −dΦϵ

dr
r̂ = − αMr

(r2 + ϵ2)(α+2)/2
r̂ (8)

This regularization ensures that as r → 0, the potential approaches a finite value of −M/ϵα, and the force
approaches 0, effectively smoothing out the singularity and ensuring a well-behaved kernel near the control
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point. The parameter ϵ controls the scale at which this smoothing occurs. The Inverse-Power Law kernel is
advantageous for its long-range influence, making it suitable for global deformations of the curve [12]. The
exponent α provides a means to tune the strength and reach of the gravitational effect. However, the choice
of the regularization parameter ϵ is crucial to balance the smoothing of the singularity with preserving the
desired long-range behavior.

3.2 Gaussian Kernel

The Gaussian Kernel is employed to model localized, fine-scale deformations due to its characteristic rapid
and smooth decay of influence with distance [19]. The mathematical formulation for the gravitational
potential Φ(r) generated by a control point of magnitude M using a Gaussian kernel is given by:

Φ(r) = −Me−
r2

2σ2 (9)

where σ > 0 represents the standard deviation of the Gaussian function. This parameter plays a critical
role in determining the spatial spread of the kernel’s influence [6]. A smaller value of σ results in a more
concentrated, highly localized deformation effect, while a larger σ leads to a broader, more gradual influence
[6]. The gravitational force F⃗ (r) derived from this potential is:

F⃗ (r) = −∇Φ(r) = −dΦ

dr
r̂ = −Mr

σ2
e−

r2

2σ2 r̂ (10)

An important property of the Gaussian kernel is that it, along with all its derivatives, is infinitely differ-
entiable (C∞) for all r ≥ 0 [10]. Furthermore, the force derived from the Gaussian potential is zero at
r = 0, thus inherently avoiding any singularity at the location of the control point. The primary advantage
of the Gaussian kernel lies in its ability to produce highly localized and smooth deformations, making it
particularly useful for introducing fine details or making precise adjustments to specific regions of the curve
[19]. A limitation of the Gaussian kernel is its relatively short range of significant influence compared to
kernels like the Inverse-Power Law or Logarithmic Potential [6]. The choice of the standard deviation σ is
therefore crucial to control the scale of the localized deformations.

3.3 Logarithmic Potential Kernel

The Logarithmic Potential Kernel models a gravitational influence that exhibits a long-range decay, although
its decay rate at large distances is generally slower than that of the Inverse-Power Law kernel [25]. In two
dimensions, the gravitational potential Φ(r) for a control point of magnitude M is defined as:

Φ(r) = M ln(r) (11)

where r is the distance from the control point. The corresponding gravitational force F⃗ (r) is given by the
gradient of the potential (note: typically force is −∇Φ, but potential wells are often defined with opposite sign
conventions; here we follow the text’s implication of force being ∇Φ for this kernel, assuming an attractive
force is desired, the potential sign might need adjustment later):

F⃗ (r) = ∇Φ(r) =
dΦ

dr
r̂ =

M

r
r̂ (12)

Similar to the Inverse-Power Law kernel, the Logarithmic Potential kernel has a singularity at r = 0, where
ln(r) → −∞ and the force tends to infinity [25]. Regularization is therefore necessary to ensure the kernel
is well-behaved near the control point [27]. A common regularization approach involves replacing r with√
r2 + ϵ2, where ϵ > 0 is a small positive constant. This yields the regularized potential:

Regularized Potential: Φϵ(r) = M ln(
√
r2 + ϵ2) =

1

2
M ln(r2 + ϵ2) (13)

The corresponding regularized force becomes:

Regularized Force: F⃗ϵ(r) = ∇Φϵ(r) =
dΦϵ

dr
r̂ =

Mr

r2 + ϵ2
r̂ (14)
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With this regularization, as r → 0, the potential approaches M ln(ϵ), which is finite, and the force approaches
0. The Logarithmic Potential kernel offers a distinct profile of long-range influence, which can be advan-
tageous for achieving global deformations with different characteristics compared to the Inverse-Power Law
[25]. However, its influence at very large distances can be weaker, and the singularity at r = 0 necessitates
careful regularization.

3.4 Hybrid Kernels

To leverage the strengths of the individual kernels and achieve more complex and nuanced deformation
effects, we propose the use of hybrid kernels. These are constructed by taking a weighted linear combination
of the potentials of two or more base kernels [31]. The weights allow for controlling the relative contribution
of each base kernel to the overall deformation field.

3.4.1 Gaussian + Inverse-Power Hybrid

This hybrid kernel combines the localized, fine-scale control provided by the Gaussian kernel with the long-
range influence of the Inverse-Power Law kernel [35]. The hybrid potential Φhybrid(r) is defined as:

Φhybrid(r) = w1ΦGaussian(r) + w2ΦInversePower,ϵ2(r) (15)

= −w1M1e
− r2

2σ2
1 − w2

M2

(r2 + ϵ22)
α2/2

(16)

where w1, w2 ≥ 0 are the weights such that w1+w2 = 1, andM1, σ1 are the magnitude and standard deviation
of the Gaussian kernel, while M2, α2, ϵ2 are the magnitude, exponent, and regularization parameter of the
Inverse-Power Law kernel, respectively. The resulting hybrid force F⃗hybrid(r) is the negative gradient of this
potential:

F⃗hybrid(r) =

(
−w1

M1r

σ2
1

e
− r2

2σ2
1 − w2

α2M2r

(r2 + ϵ22)
(α2+2)/2

)
r̂ (17)

This combination allows for simultaneous control over both local details and the global shape of the curve.
The weights w1 and w2 determine the relative importance of the localized and long-range effects.

3.4.2 Logarithmic + Gaussian Hybrid

This hybrid kernel combines the long-range influence of the Logarithmic Potential kernel with the localized
influence of the Gaussian kernel (inspired by [39], [31]). The hybrid potential Φhybrid(r) is given by combining
the regularized Logarithmic and Gaussian potentials (assuming force for Log is ∇Φ and for Gaussian is −∇Φ,

we combine potentials accordingly, or assume a consistent force direction, e.g., attractive, meaning F⃗ = −kr̂
where k > 0. Let’s assume both are attractive potentials, so force is −∇Φ for both, adjusting the sign of the
Log potential term):

Φhybrid(r) = w1ΦLogarithmic,ϵ1(r) + w2ΦGaussian(r) (18)

= −1

2
w1M1 ln(r

2 + ϵ21)− w2M2e
− r2

2σ2
2 (19)

with weights w1, w2 ≥ 0 (w1 + w2 = 1) and parameters M1, ϵ1 for the regularized Logarithmic kernel and
M2, σ2 for the Gaussian kernel. Note the negative sign added to the Logarithmic term to ensure consistency
with an attractive force derived via F⃗ = −∇Φ. The hybrid force F⃗hybrid(r) is the negative gradient of this
potential:

F⃗hybrid(r) =

(
w1

M1r

r2 + ϵ21
− w2

M2r

σ2
2

e
− r2

2σ2
2

)
r̂ (20)

This hybrid offers an alternative approach to achieving both global and local influences on the curve’s shape,
potentially resulting in unique deformation characteristics due to the nature of the Logarithmic potential.
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4 Continuous Deformation Formula

The continuous deformation of the base straight line segment C⃗(t) under the influence of N gravitational

control points is achieved by calculating the displacement ∆C⃗(t) at each point C⃗(t) due to the combined

gravitational forces exerted by all control points. The deformed curve C⃗ ′(t) is then given by:

C⃗ ′(t) = C⃗(t) + ∆C⃗(t) (21)

The total displacement vector ∆C⃗(t) is the vector sum of the individual forces contributed by each control
point Gi located at Li with magnitude Mi and employing a specific kernel. For each control point, the force

exerted on C⃗(t) depends on the distance rit =
∥∥∥Li − C⃗(t)

∥∥∥ and the unit vector r̂it = Li−C⃗(t)

∥Li−C⃗(t)∥ pointing

from C⃗(t) to Li. The total displacement is thus:

∆C⃗(t) =

N∑
i=1

F⃗i(rit) (22)

where F⃗i(rit) is the force vector exerted by the i-th control point at a distance rit. This force vector is given
by Fi(rit)r̂it (or potentially −Fi(rit)r̂it depending on attractive/repulsive convention and potential definition,
but consistent with the forces derived above, it represents the vector force). The magnitude Mi scales the
strength of this force. The location Li determines rit and r̂it, influencing the deformation’s locality. The
principle of superposition ensures that the total deformation is the sum of individual contributions. Since
the base curve C⃗(t) is C∞ and the force fields from the Gaussian kernel and the regularized Inverse-Power

Law and Logarithmic kernels are also C∞ (as shown in the next section), the resulting deformed curve C⃗ ′(t)
is infinitely differentiable.

5 Proof of Infinite Differentiability

5.1 Mathematical Preliminaries: Infinite Differentiability

A function f : U → Rm, where U is an open subset of Rn, is said to be infinitely differentiable (or of class
C∞) if all its partial derivatives of all orders exist and are continuous on U . For a scalar function Φ(x, y)

in two dimensions (n = 2,m = 1), this means that partial derivatives like ∂kΦ
∂xi∂yk−i exist and are continuous

for all non-negative integers k and 0 ≤ i ≤ k. For a vector field F⃗ (x, y) = (Fx(x, y), Fy(x, y)), infinite
differentiability requires that both component functions Fx and Fy are infinitely differentiable.

In our context, the gravitational potential Φ(r) associated with a control point Gi at location Li = (xi, yi)
is primarily a function of the distance r. Since r =

√
(x− xi)2 + (y − yi)2, where (x, y) are the coordinates

of a point C⃗(t) on the curve, the potential Φ can be viewed as a function Φ(x, y). The gravitational force

F⃗ (x, y) is related to the gradient of the potential (typically F⃗ = −∇Φ for attractive forces from potentials

like Gaussian and Inverse-Power, or F⃗ = ∇Φ as defined for the Logarithmic kernel, though we adjusted the
Log potential in Eq. 19 for consistency). The force F⃗ (x, y) is a vector field whose components are partial
derivatives of Φ with respect to x and y:

Fx = −∂Φ

∂x
(23)

Fy = −∂Φ

∂y
(24)

(assuming F⃗ = −∇Φ).

The final deformed curve is C⃗ ′(t) = C⃗(t) + ∆C⃗(t). Since C⃗(t) is a linear function of t, it is C∞. The

displacement ∆C⃗(t) (Eq. 22) is a sum of force vectors F⃗i(rit). Each force F⃗i depends on the position

C⃗(t) = (x(t), y(t)). Thus, ∆C⃗(t) is a composition of functions: the kernel function (which depends on x, y)
and the base curve functions x(t), y(t). The composition of C∞ functions is C∞. Therefore, if we show

that each force kernel F⃗i(x, y) is C∞ with respect to (x, y), then ∆C⃗(t) will be C∞ with respect to t, and

consequently, C⃗ ′(t) will be C∞.
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5.2 Proofs for Individual Kernels

5.2.1 Regularized Inverse-Power Law Kernel

The regularized potential is given by:

Φϵ(r) = − M

(r2 + ϵ2)α/2
(25)

where r2 = (x− xi)
2 + (y − yi)

2 and ϵ > 0. Let u(x, y) = (x− xi)
2 + (y − yi)

2 + ϵ2. This is a polynomial in
x and y. Since polynomials are infinitely differentiable, u(x, y) is C∞. Furthermore, since (x− xi)

2 ≥ 0 and
(y − yi)

2 ≥ 0, and ϵ2 > 0, we have u(x, y) ≥ ϵ2 > 0 for all (x, y). The potential can be written as Φϵ(x, y) =
−M(u(x, y))−α/2. Consider the function v(z) = z−α/2. Since α > 0, this function is infinitely differentiable
for z > 0. Since u(x, y) > 0 and is C∞, and v(z) is C∞ for z > 0, the composition Φϵ(x, y) = −Mv(u(x, y))
is infinitely differentiable by the chain rule. The force components are:

Fϵ,x = −∂Φϵ

∂x
= − αM(x− xi)

(r2 + ϵ2)(α+2)/2
(26)

Fϵ,y = −∂Φϵ

∂y
= − αM(y − yi)

(r2 + ϵ2)(α+2)/2
(27)

The denominator (r2 + ϵ2)(α+2)/2 = (u(x, y))(α+2)/2 is an infinitely differentiable function (composition of
u(x, y) and z(α+2)/2) which is never zero. The numerators αM(x−xi) and αM(y− yi) are polynomials in x
and y, hence C∞. Since Fϵ,x and Fϵ,y are ratios of infinitely differentiable functions where the denominator

is never zero, they are infinitely differentiable. Thus, the force field F⃗ϵ(x, y) is C
∞.

5.2.2 Gaussian Kernel

The potential is:

Φ(r) = −Me−
r2

2σ2 (28)

where r2 = (x− xi)
2 +(y− yi)

2 and σ > 0. Let w(x, y) = − r2

2σ2 = − (x−xi)
2+(y−yi)

2

2σ2 . This is a polynomial in

x and y, hence infinitely differentiable. The potential is Φ(x, y) = −Mew(x,y). The exponential function ez

is infinitely differentiable for all z ∈ R. By the chain rule, the composition Φ(x, y) = −Mew(x,y) is infinitely
differentiable. The force components are:

Fx = −∂Φ

∂x
= −M(x− xi)

σ2
e−

r2

2σ2 (29)

Fy = −∂Φ

∂y
= −M(y − yi)

σ2
e−

r2

2σ2 (30)

These components are products of polynomials (e.g., −M
σ2 (x− xi)) and the infinitely differentiable function

ew(x,y). The product of infinitely differentiable functions is infinitely differentiable. Thus, Fx and Fy are

C∞, and the force field F⃗ (x, y) is C∞.

5.2.3 Regularized Logarithmic Potential Kernel

The regularized potential is:

Φϵ(r) =
1

2
M ln(r2 + ϵ2) (31)

where r2 = (x−xi)
2+(y−yi)

2 and ϵ > 0. (Note: We use the form from Eq. 19 for consistency, assuming F⃗ =
−∇Φ). Let’s redefine Φϵ(r) = − 1

2M ln(r2+ϵ2) for an attractive force. Let u(x, y) = (x−xi)
2+(y−yi)

2+ϵ2.
As established before, u(x, y) is C∞ and u(x, y) ≥ ϵ2 > 0. The potential is Φϵ(x, y) = − 1

2M ln(u(x, y)).
The natural logarithm function ln(z) is infinitely differentiable for z > 0. By the chain rule, the composition
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Φϵ(x, y) is infinitely differentiable. The force components are:

Fϵ,x = −∂Φϵ

∂x
=

M(x− xi)

r2 + ϵ2
(32)

Fϵ,y = −∂Φϵ

∂y
=

M(y − yi)

r2 + ϵ2
(33)

The denominator r2 + ϵ2 = u(x, y) is C∞ and never zero. The numerators M(x − xi) and M(y − yi) are
polynomials, hence C∞. Since Fϵ,x and Fϵ,y are ratios of infinitely differentiable functions with a non-zero

denominator, they are infinitely differentiable. Thus, the force field F⃗ϵ(x, y) is C
∞.

5.3 Proofs for Hybrid Kernels

5.3.1 Gaussian + Inverse-Power Hybrid Kernel

The hybrid potential is:
Φhybrid(r) = w1ΦGaussian(r) + w2ΦInversePower,ϵ2(r) (34)

where w1, w2 ≥ 0 and w1+w2 = 1. We have already shown that ΦGaussian(r) (as Φ(x, y)) and ΦInversePower,ϵ2(r)
(as Φϵ2(x, y)) are infinitely differentiable functions of (x, y). A linear combination of infinitely differentiable
functions is also infinitely differentiable. Therefore, Φhybrid(x, y) is infinitely differentiable. The force derived
from this potential is:

F⃗hybrid(r) = −∇Φhybrid(r) (35)

= w1(−∇ΦGaussian(r)) + w2(−∇ΦInversePower,ϵ2(r)) (36)

= w1F⃗Gaussian(r) + w2F⃗InversePower,ϵ2(r) (37)

Since F⃗Gaussian(x, y) and F⃗InversePower,ϵ2(x, y) are infinitely differentiable vector fields, their linear combination

F⃗hybrid(x, y) is also an infinitely differentiable vector field.

5.3.2 Logarithmic + Gaussian Hybrid Kernel

The hybrid potential (using the form ensuring attractive force) is:

Φhybrid(r) = w1ΦLogarithmic,ϵ1(r) + w2ΦGaussian(r) (38)

where:

ΦLogarithmic,ϵ1(r) = −1

2
M1 ln(r

2 + ϵ21) (39)

and w1, w2 ≥ 0, w1 + w2 = 1. We have shown that ΦLogarithmic,ϵ1(x, y) and ΦGaussian(x, y) are infinitely
differentiable. Thus, their linear combination Φhybrid(x, y) is also infinitely differentiable. The force is:

F⃗hybrid(r) = −∇Φhybrid(r) (40)

= w1(−∇ΦLogarithmic,ϵ1(r)) + w2(−∇ΦGaussian(r)) (41)

= w1F⃗Logarithmic,ϵ1(r) + w2F⃗Gaussian(r) (42)

As F⃗Logarithmic,ϵ1(x, y) and F⃗Gaussian(x, y) are infinitely differentiable vector fields, their linear combination

F⃗hybrid(x, y) is also an infinitely differentiable vector field.

5.4 Conclusion of Proof

Since the base curve C⃗(t) = (x(t), y(t)) is C∞ with respect to t, and each force kernel F⃗i(x, y) (whether basic

or hybrid, with regularization where needed) is C∞ with respect to (x, y), the composition F⃗i(C⃗(t)) is C∞

with respect to t. The total displacement is:

∆C⃗(t) =

N∑
i=1

F⃗i(C⃗(t)) (43)
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This is a sum of C∞ functions, and is therefore C∞. Finally, the deformed curve is:

C⃗ ′(t) = C⃗(t) + ∆C⃗(t) (44)

This is the sum of two C∞ functions, and is thus infinitely differentiable (C∞) with respect to the parameter
t.

6 Conclusion

This paper introduces a novel method for generating infinitely differentiable smooth curves by leveraging the
concept of dynamically modulated gravitational fields. The framework begins with a straight line segment
that is continuously deformed by the influence of N gravitational control points. Each control point is char-
acterized by its magnitude and location, and its influence on the curve is governed by a chosen gravitational
kernel. We have explored four types of kernels: the Inverse-Power Law, the Gaussian, the Logarithmic
Potential, and hybrid kernels formed by combining the Gaussian with the Inverse-Power Law and the Log-
arithmic Potential. For kernels exhibiting singularities at the origin (Inverse-Power Law and Logarithmic),
we derived regularized formulations to ensure finite and smooth behavior for all distances. A continuous
deformation formula was presented, describing the displacement of each point on the base curve as the vec-
tor sum of the forces exerted by all control points. Crucially, we proved that the inherent smoothness of
the Gaussian kernel and the smooth nature of the regularized Inverse-Power Law and Logarithmic kernels,
combined with the smoothness of the base curve, guarantee that the resulting deformed curves are infinitely
differentiable (C∞). This offers a significant advantage over traditional piecewise polynomial methods like
standard splines, where achieving C∞ continuity can be challenging.

The proposed method holds promising potential for various applications. In computer graphics, it could
be used to generate highly smooth and intricate curves for object design, animation paths, and special
effects, with the localized control of the Gaussian kernel being particularly useful for adding fine details
[42]. For physical simulations, this framework could provide a means to generate smooth and continuous
trajectories for particles or deformable objects, potentially offering a more natural way to model interactions
[1]. In geometric design, the ability to create curves with specific smoothness properties could be valuable
in engineering applications such as airfoil design or road construction [7].

Future research directions could explore methods for automatically determining optimal control point
configurations to achieve desired curve shapes. Investigating the use of other types of gravitational kernels
or more complex hybrid combinations could further expand the range of achievable deformations. Extending
this framework to generate infinitely differentiable smooth surfaces by deforming a base planar patch in
3D space using gravitational control points is another promising avenue. Analyzing the computational
efficiency of this method and developing techniques for real-time curve generation and manipulation would
be crucial for practical applications. Finally, a comparative study of this method against existing curve
generation techniques, using quantitative metrics and user evaluations, would help to establish its strengths
and limitations more definitively.
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