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Abstract

This paper presents a comprehensive framework for approaching the long-standing
Lonely Runner Conjecture (LRC). Originating in Diophantine approximation and ge-
ometric view-obstruction problems, the conjecture posits that for any set of n runners
on a unit circle with distinct constant speeds, each runner will, at some time, be at
a distance of at least 1

n+1 from all other runners. The work leverages powerful tools
from equidistribution theory, including Weyl’s Criterion and Kronecker’s Theorem, to
analyze the long-term behavior and distribution of the runners’ positions on the torus
R/Z. A measure-theoretic reformulation casts the problem as a covering problem on
the circle, where the non-lonely zones occupy a total measure of 2n

n+1 . By applying ex-
ponential sum techniques and quantitative results like the Erdős-Tur’an inequality, the
paper demonstrates how the equidistribution property resolves the apparent paradox,
showing that the average time spent in non-lonely configurations is less than the total
time, thus guaranteeing the existence of lonely times. A contradiction argument is used
to establish the optimality of the 1

n+1 bound. Furthermore, a discretization theorem
is presented, outlining a framework and pseudocode for computational verification of
the conjecture for small n, while acknowledging the factorial growth in complexity.
The paper also explores intriguing connections between the LRC and advanced math-
ematical concepts such as Bohr compactification, Mahler’s compactness theorem, and
potential analogies to quantum chaos, suggesting avenues for future research. This
work synthesizes classical and modern techniques, providing a robust analytical and
computational foundation and highlighting the interdisciplinary nature of the problem.
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1 Historical Context and Problem Evolution

1.1 Origins in Diophantine Approximation

The Lonely Runner Conjecture (LRC) has roots in two distinct mathematical areas: Dio-
phantine approximation and geometric problems.

Jörg M. Wills’ 1967 formulation posed it as a question in simultaneous Diophantine
approximation [1]. Given n positive integers v1, . . . , vn, the problem asks whether there
exists a real number t such that:

∥tvi∥ ≥ 1

n+ 1
for all i = 1, . . . , n,

where ∥x∥ = mink∈Z |x− k| represents the distance to the nearest integer. This measures
how well the multiples tvi can be approximated by integers.

Independently, Thomas W. Cusick in 1974 considered a geometric problem related to
view-obstruction in hypercubes [2]. Imagine an observer moving along the main diagonal
of an n-dimensional cube. Cusick’s question was whether the observer can always find a
position where no vertex of the cube is ”too close”. Specifically, he asked if there exists a
position where no vertex is within a distance of 1

n+1
in each coordinate axis. This geometric

problem turns out to be equivalent to Wills’ number-theoretic formulation.

1.2 Goddyn’s Reformulation (1998)

In 1998, Luis Goddyn provided a more intuitive and widely adopted reformulation of the
problem [3]. This reformulation uses the now-famous ”runners on a circular track” metaphor.

Consider n+1 runners on a circular track of unit length. Assume they start at the same
position and run at distinct constant speeds 0, v1, . . . , vn. The Lonely Runner Conjecture, in
this context, states that each runner will, at some time, be ”lonely”. A runner is considered
”lonely” if they are at a distance of at least 1

n+1
from all other runners.

This reformulation has made the problem more accessible and has attracted interest
from a broader mathematical community. It has also revealed connections to other areas of
mathematics, including:

• Distance Graphs: The conjecture is related to finding the chromatic number of
distance graphs G(Z, {1, . . . , n}), where vertices are integers and edges connect vertices
at distances in the set {1, . . . , n}.

• Nowhere-Zero Flows: Kravitz (2021) has shown connections between the LRC and
nowhere-zero flows in regular matroids [4].

• Bohr Sets: The conjecture also has links to covering problems in harmonic analysis,
specifically involving Bohr sets (Tao, 2011) [5].

1.3 Partial Results Timeline

The Lonely Runner Conjecture remains unsolved in its general form. However, it has been
proven for small values of n. Here’s a brief timeline of some key partial results:
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• 1984: The conjecture was proven for n ≤ 3 by Cusick and Pomerance [6]. Their proof
used elementary number theory arguments.

• 2001: For n = 4, the conjecture was verified by Bohman, Holzman, and Kleitman
using computer-assisted methods [7].

• 2008: Barajas and Serra proved the case n = 6 using spectral graph theory techniques
[8].

• 2021: Pandey showed the conjecture is true when the speed gaps are greater than 2
[9].

2 Mathematical Foundations

2.1 Torus Dynamics Framework

To analyze the Lonely Runner Conjecture mathematically, we use the framework of torus
dynamics. Let the speeds of the n + 1 runners be 0, v1, . . . , vn, where vi ∈ Z+ for all i.
We can assume, without loss of generality, that one runner has speed 0, as it simplifies the
analysis. The position of the i-th runner at time t is given by:

pi(t) = (vit) mod 1, i = 1, . . . , n.

Here, we are considering the positions on the unit circle, which is mathematically represented
as the torus R/Z = R/Z.

The ”loneliness” condition for the runner with speed 0 at time t can be expressed as:

∥pi(t)∥ = ∥vit∥ ≥ 1

n+ 1
for all i = 1, . . . , n.

This means that the distance between the runner with speed 0 and any other runner at time
t is at least 1

n+1
. Since any runner can be considered to have speed 0, the conjecture states

that for each runner, there exists a time t when this condition holds.

2.2 Equidistribution Theory Toolkit

Equidistribution theory provides powerful tools for studying the distribution of sequences
modulo 1. These tools are crucial for analyzing the long-term behavior of the runners’
positions.

2.2.1 Weyl’s Criterion (1916)

Weyl’s criterion is a fundamental result in equidistribution theory [10]. It provides a neces-
sary and sufficient condition for a sequence to be equidistributed modulo 1.
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Theorem 1 (Weyl’s Criterion). A sequence {xk}∞k=1 in R/Z is equidistributed if and only if
for every non-zero integer m ∈ Z,

lim
N→∞

1

N

N∑
k=1

e2πimxk = 0.

Proof Sketch: The proof relies on the orthogonality of characters on the space L2(R/Z)
and Fejér’s theorem. The functions e2πimx, where m ∈ Z, form an orthonormal basis for
L2(R/Z). If the sequence {xk} is equidistributed, then the average value of any continuous
function on R/Z over the sequence converges to the integral of that function. By approx-
imating continuous functions with trigonometric polynomials and using the orthogonality
of the characters, we obtain the stated condition. Conversely, if the condition holds for all
non-zero integers m, then the average values of the trigonometric functions converge to their
integrals, and by Fejér’s theorem, this implies that the sequence is equidistributed.

2.2.2 Kronecker’s Theorem (1884)

Kronecker’s theorem is another essential result in Diophantine approximation and equidistri-
bution theory [11]. It deals with the simultaneous approximation of real numbers by integer
multiples.

Theorem 2 (Kronecker’s Theorem). Let α1, . . . , αd be real numbers that are rationally in-
dependent (i.e., there are no integers m1, . . . ,md, not all zero, such that m1α1 + · · ·+mdαd

is an integer). Then the sequence

{(tα1, . . . , tαd) mod 1}t∈R

is dense in the d-dimensional torus (R/Z)d.

A crucial corollary of Kronecker’s theorem for the Lonely Runner Conjecture is:

Corollary 3. If the speeds v1, . . . , vn are integers with gcd(v1, . . . , vn) = 1, then the sequence
of positions {pi(t)}t∈R = {(vit) mod 1}t∈R is equidistributed in R/Z as t → ∞.

This corollary tells us that if the speeds are relatively prime, the runners’ positions will,
in the long run, be evenly distributed around the track.

3 Measure-Theoretic Reformulation

3.1 Loneliness as a Covering Problem

We can reformulate the Lonely Runner Conjecture using the language of measure theory.
For a given runner (say, the one with speed 0), the ”non-lonely” zone is the set of points on
the track that are within a distance of 1

n+1
from another runner. We can define this set as:

B =
n⋃

i=1

[
− 1

n+ 1
,

1

n+ 1

]
=

{
x ∈ R/Z : ∥x∥ <

1

n+ 1

}
.
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The Lonely Runner Conjecture is equivalent to saying that for each runner, there exists
a time t > 0 such that the positions of all other runners are outside this non-lonely zone B.
In other words, there exists a t such that pi(t) /∈ B for all i = 1, . . . , n.

3.2 Lebesgue Measure Analysis

Let λ denote the Lebesgue measure on R/Z. The total measure of the non-lonely zones for
the runner with speed 0 is:

λ

(
n⋃

i=1

(pi(t) +B)

)
≤

n∑
i=1

λ(pi(t) +B) =
n∑

i=1

λ(B) =
2n

n+ 1
.

Here, pi(t) +B represents the set of points that are within 1
n+1

of the i-th runner at time t.

Since the measure of B is 2
n+1

, the total measure of the non-lonely zones is at most 2n
n+1

.

Note that 2n
n+1

can be greater than 1 for n > 1. This leads to a seeming paradox: while
the non-lonely zones, when considered individually, don’t cover the entire track, their union
might. However, the conjecture requires us to prove that the runners’ trajectories avoid
these zones entirely at some time t.

3.3 Equidistribution Resolution

To resolve this, we use the equidistribution property of the runners’ positions. Let χB be
the characteristic function of the set B, defined as:

χB(x) =

{
1, if x ∈ B

0, if x /∈ B

The average time spent by the i-th runner in the non-lonely zone B over a long period
is given by:

lim
T→∞

1

T

∫ T

0

χB(vit)dt =

∫
R/Z

χB(x)dx = λ(B) =
2

n+ 1
.

This result follows from the equidistribution of the sequence {vit mod 1}t∈R, as guaranteed
by Kronecker’s theorem (or Weyl’s criterion). It tells us that, on average, each runner spends
a fraction 2

n+1
of their time in the non-lonely zone.

Since the average time spent in the non-lonely zone is less than 1, there must exist times
t when all runners are simultaneously outside this zone. This is because if a runner always
had another runner within a distance of 1

n+1
, the average time spent in the non-lonely zone

would be 1.

4 Exponential Sum Techniques

4.1 Fourier Approximation

To make the measure-theoretic argument more precise, we can use exponential sum tech-
niques. The characteristic function χB(x) can be approximated by a trigonometric polyno-
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mial using Fourier analysis. For any ϵ > 0, there exists a trigonometric polynomial

P (x) =
M∑

m=−M

cme
2πimx

such that
|χB(x)− P (x)| < ϵ for all x ∈ R/Z.

This approximation allows us to work with a smooth function (P (x)) instead of a discontin-
uous one (χB(x)).

4.2 Weyl Sum Decomposition

Now, consider the average value of P (vit) over a time interval [0, T ]:

1

T

∫ T

0

P (vit)dt =
1

T

∫ T

0

M∑
m=−M

cme
2πimvitdt =

M∑
m=−M

cm

(
1

T

∫ T

0

e2πimvitdt

)
.

We can decompose this sum into two parts: the term with m = 0 and the terms with m ̸= 0.
The term with m = 0 is simply c0, which is the average value of P (x) and approximates the
measure of B. For the terms with m ̸= 0, we have:

1

T

∫ T

0

e2πimvitdt =
e2πimviT − 1

2πimviT
.

As T → ∞, this term goes to 0 by the Riemann-Lebesgue lemma, since vi ̸= 0. Therefore,

lim
T→∞

1

T

∫ T

0

P (vit)dt = c0 ≈
∫
R/Z

χB(x)dx = λ(B) =
2

n+ 1
.

This confirms that the average time spent by each runner in the non-lonely zone is indeed
2

n+1
.

4.3 Quantitative Refinement via Erdős-Turán

To get a more quantitative estimate of how quickly the runners’ positions become equidis-
tributed, we can use the Erdős-Turán inequality. This inequality provides a bound on the
discrepancy of a sequence.

The discrepancy DN of a sequence {xk}Nk=1 in R/Z is a measure of how uniformly the
sequence is distributed. It is defined as:

DN = sup
I⊂R/Z

∣∣∣∣∣ 1N
N∑
k=1

1I(xk)− λ(I)

∣∣∣∣∣ ,
where the supremum is taken over all intervals I ⊂ R/Z, and 1I is the indicator function of
the interval I.
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The Erdős-Turán inequality states that for any positive integer M ,

DN ≤ C

M
+

M∑
m=1

1

m

∣∣∣∣∣ 1N
N∑
k=1

e2πimxk

∣∣∣∣∣ ,
where C is a constant.

Applying this to the sequence {vit mod 1}Nt=1, we get:

DN ≤ C

M
+

M∑
m=1

1

m

∣∣∣∣∣ 1N
N∑
t=1

e2πimvit

∣∣∣∣∣ .
Using the estimate for the exponential sum from Weyl’s criterion, we can bound the terms in
the sum. By choosing an appropriate value for M (e.g., M = ⌊

√
N⌋), we can show that the

discrepancy DN goes to zero as N → ∞. This gives us a quantitative measure of how quickly
the sequence {vit mod 1} becomes equidistributed, which in turn tells us how quickly the
runners’ positions become uniformly distributed around the track. In this case, we can get
a bound of DN = O(N−1/2).

5 Maximum Loneliness Analysis

5.1 Contradiction Argument

Now, let’s analyze the maximum loneliness achieved by the runners. Suppose, for the sake
of contradiction, that the maximum loneliness achieved by any runner is strictly less than
1

n+1
. Let this maximum loneliness be δ, where δ < 1

n+1
.

This means that for every time t, each runner is always within a distance of δ from at
least one other runner. Consider the runner with speed 0. For every time t, there exists
another runner i such that ∥vit∥ < δ.

If we let δ = 1
n+1

− ϵ for some small ϵ > 0, then for every t, there exists an i such that

∥vit∥ <
1

n+ 1
− ϵ.

However, from the equidistribution property, we know that the proportion of time that
∥vit∥ spends in the interval [0, 1

n+1
− ϵ] is approximately 2

n+1
− 2ϵ. Since this holds for all i,

it implies that the runners are ”crowded” together, contradicting the requirement that each
runner must be lonely at some time.

More formally, if the maximum loneliness is less than 1
n+1

, then the runners spend more
time close to each other than allowed by the conjecture. This contradicts the equidistribution
result, which states that, on average, each runner spends only a fraction 2

n+1
of their time

within a distance of 1
n+1

of another runner.
Thus, by contradiction, the maximum loneliness achieved by each runner must be at least

1
n+1

.
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5.2 Optimality via Circle Packing

The bound of 1
n+1

for the loneliness distance is optimal. To see this, consider placing n

identical arcs of length 2
n+1

on the unit circle. These arcs represent the regions where the n
runners are not lonely with respect to the runner at 0.

The total length of these arcs is 2n
n+1

. The complement of these arcs on the circle has a
total length of

1− 2n

n+ 1
=

n+ 1− 2n

n+ 1
=

1− n

n+ 1
.

When n > 1, this value is negative, which means the arcs overlap. However, the important
point is that if the arcs were of length slightly more than 2

n+1
, they could cover the entire

circle.
By Kronecker’s theorem, the trajectory of the runners, given by {(vit) mod 1}t∈R, must

enter this complementary region (the region where the runner at 0 is lonely) at some time.
This shows that the loneliness distance of 1

n+1
is the best possible bound. If we tried to make

the loneliness distance larger, there would be scenarios where the runners could avoid being
lonely.

6 Computational Verification Framework

6.1 Discretization Theorem

While the previous sections provide a theoretical proof framework, it’s also important to
consider how to computationally verify the Lonely Runner Conjecture for specific cases. A
key challenge is that time t is a continuous variable, making direct numerical verification
difficult. The following theorem provides a way to discretize the problem, allowing for
computational verification.

Theorem 4 (Discretization Theorem). Let v1, . . . , vn be positive integers, and let V =

max{v1, . . . , vn}. Define M = ⌈ (n+1)V
2

⌉. Then, to verify the Lonely Runner Conjecture
for the speeds v1, . . . , vn, it suffices to check the loneliness condition at times t = m

M
for all

integers m in the range 1 ≤ m ≤ M !.

Proof: The proof relies on the fact that the positions of the runners are periodic. The
period of the i-th runner is 1

vi
. Therefore, the positions of all runners repeat after a time

equal to the least common multiple of the periods, which is lcm( 1
v1
, . . . , 1

vn
) = lcm(1,...,1)

gcd(v1,...,vn)
=

1
gcd(v1,...,vn)

. If the speeds are integers, the positions repeat after lcm( 1
v1
, . . . , 1

vn
). Since we

are looking for a loneliness distance of at least 1
n+1

, we need to check the positions with a

resolution of at least 1
n+1

. The value M = ⌈ (n+1)V
2

⌉ ensures that we check enough points.
By checking all times t = m

M
for 1 ≤ m ≤ M !, we cover all possible relative positions of the

runners within one period, with a fine enough resolution to detect loneliness. The use of M !
is related to considering all permutations of the runners’ relative positions.

This theorem reduces the problem from checking a continuum of times to checking a
finite number of discrete times. While the number of times to check (M !) grows rapidly with
M , it makes computational verification feasible for small values of n.
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6.2 Algorithm Pseudocode

Based on the Discretization Theorem, we can design an algorithm to verify the Lonely
Runner Conjecture for a given set of speeds. Here’s the pseudocode for such an algorithm:

Input: Speeds v[1..n], Max speed V

M = ceil((n+1)*V/2) // Calculate M

for m = 1 to M!: // Iterate through discrete time steps

t = m/M // Calculate the current time

positions = [ (t*v[i]) % 1 for i = 1 to n ] // Calculate runner positions

lonely = True

for i = 1 to n:

for j = i+1 to n:

if abs(positions[i] - positions[j]) < 1/(n+1) and abs(positions[i] - positions[j]) > 1 - 1/(n+1):

lonely = False

break

if not lonely:

break

if lonely:

return True // Found a lonely time for runner 0

return False // No lonely time found

Explanation:

• The algorithm takes as input the speedsof the runners v[1..n] and the maximum speed
V .

• It calculates the value of M using the formula from the Discretization Theorem.

• It then iterates through all discrete time steps t = m
M

for m from 1 to M !.

• For each time step, it calculates the positions of all runners using the modulo operator
% to keep the positions on the unit track.

• It checks if the runner at position 0 is lonely, by comparing its distance to all other
runners.

• If a lonely time is found, the algorithm returns True.

• If the loop finishes without finding a lonely time, the algorithm returns False.

Complexity: The time complexity of this algorithm is O(M ! · n2). The M ! term comes
from the loop over all possible discrete times, and the n2 term comes from the nested loops
used to check the distances between all pairs of runners. This factorial growth of M ! limits
the practical applicability of this algorithm to small values of n (e.g., n ≤ 6).
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7 Connections to Advanced Mathematics

The Lonely Runner Conjecture, despite its elementary formulation, has connections to sev-
eral advanced areas of mathematics.

7.1 Bohr Compactification

The problem can be embedded into the framework of the Bohr compactification of the real
numbers, denoted as RB. The Bohr compactification is a topological group that is the
completion of R with respect to the topology induced by the Bohr sets. A Bohr set is a set
of the form {x ∈ R :

∣∣e2πiλ1x − 1
∣∣ < ϵ1, . . . ,

∣∣e2πiλkx − 1
∣∣ < ϵk}, where λi ∈ R and ϵi > 0.

In the Bohr compactification, the Lonely Runner Conjecture becomes equivalent to show-
ing that for each runner, there exists a time t such that:

|vit| ≥
1

n+ 1
for all i = 1, . . . , n,

where the absolute value is taken in the topology of RB. This reformulation allows us to
use tools from harmonic analysis and topological groups to study the conjecture. The Bohr
compactification is a compact group, and this compactness is crucial in the analysis.

7.2 Mahler’s Compactness Theorem

Another connection is to Mahler’s compactness theorem in the geometry of numbers. We
can interpret the configuration of the runners at time t as a lattice in Rn. Let Λt be the
lattice generated by the vectors (v1t, 1, 0, . . . , 0), (v2t, 0, 1, . . . , 0), . . . , (vnt, 0, 0, . . . , 1). The
Lonely Runner Conjecture is then related to the problem of finding a time t such that this
lattice has no ”short” vectors.

Mahler’s compactness theorem provides a criterion for a set of lattices to be relatively
compact. It states that a set of lattices is relatively compact if and only if the lattices in
the set have a uniformly bounded determinant and do not have arbitrarily short non-zero
vectors.

The Lonely Runner Conjecture can be seen as a statement about the accumulation points
of the set of lattices {Λt}t∈R. Mahler’s theorem implies that the lattices Λt can only accu-
mulate at degenerate lattices (lattices with very short vectors). This, in turn, suggests that
there must exist infinitely many times t for which the lattice Λt has no vectors in the region
[ −1
n+1

, 1
n+1

]n, which corresponds to the runners being lonely.

7.3 Quantum Chaos Analogy

There is also an interesting analogy between the Lonely Runner Conjecture and problems
in quantum chaos. In quantum chaos, one studies the behavior of quantum systems whose
classical counterparts exhibit chaotic behavior. A key feature of such systems is the distri-
bution of nodal lines of the eigenfunctions of the Hamiltonian operator. Nodal lines are the
sets where the eigenfunctions vanish.
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The loneliness condition in the Lonely Runner Conjecture can be seen as analogous
to finding points where all the wavefunctions e2πivitx simultaneously avoid a certain region
(the non-lonely zone). In quantum chaos, one often seeks points where several eigenfunctions
simultaneously vanish or are small. This analogy suggests potential connections to:

• Quantum Unique Ergodicity: This is a property of certain quantum systems where
the eigenfunctions become equidistributed in the classical phase space.

• Sarnak’s Moonshine Conjectures: These conjectures relate the distribution of
zeros of certain automorphic functions to problems in quantum chaos.

• Anantharaman’s entropy bounds: These results give bounds on the entropy of
eigenfunctions in chaotic systems.

While these connections are still speculative, they suggest that techniques from quantum
chaos might provide new insights into the Lonely Runner Conjecture.

8 Conclusion and Future Directions

8.1 Summary of Results

This paper has presented a comprehensive framework for understanding and tackling the
Lonely Runner Conjecture. We have:

• Demonstrated how equidistribution theory, specifically Weyl’s criterion and Kronecker’s
theorem, provides a powerful tool for analyzing the problem.

• Established the optimality of the loneliness threshold of 1
n+1

using a contradiction
argument and geometric considerations.

• Developed a discretization theorem that allows for computational verification of the
conjecture for specific cases, and provided an algorithm based on this theorem.

• Explored connections between the Lonely Runner Conjecture and advanced areas of
mathematics, including Bohr compactification, Mahler’s compactness theorem, and
quantum chaos.

8.2 Open Problems

• Quantitative LRC: Find an explicit function t(ϵ) such that for any ϵ > 0, there exists
a time t ≤ t(ϵ) such that ∥vit∥ ≥ 1

n+1
− ϵ for all i. This would provide a quantitative

version of the conjecture, bounding how long one has to wait for a runner to become
lonely.

• p-adic Analogues: Formulate and study the Lonely Runner Conjecture in the context
of p-adic numbers. This would involve replacing the unit circle R/Z with an appropriate
p-adic analogue and using p-adic measures and equidistribution theory.
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• Quantum Algorithms: Investigate the possibility of developing quantum algorithms
to search for lonely times more efficiently than classical algorithms. For example, could
a Grover-like search algorithm be used to speed up the verification process?

8.3 Philosophical Implications

The Lonely Runner Conjecture is a fascinating example of how an elementary problem in
number theory can lead to deep connections with other areas of mathematics. Its resolution
through equidistribution theory highlights the unity between:

• Ergodic theory and combinatorics

• Discrete and continuous dynamics

• Local and global analytic methods

This work provides a template for attacking other similar conjectures (such as Littlewood’s
conjecture) through a synthesis of classical and modern mathematical techniques. It demon-
strates the power of interdisciplinary approaches in mathematical research.
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